File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

RuoffRodney Scott

Ruoff, Rodney S.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization

Author(s)
Potts, Jeffrey R.Lee, Sun HwaAlam, Todd M.An, JinhoStoller, Meryl D.Piner, Richard D.Ruoff, Rodney S.
Issued Date
2011-07
DOI
10.1016/j.carbon.2011.02.023
URI
https://scholarworks.unist.ac.kr/handle/201301/54293
Fulltext
https://www.sciencedirect.com/science/article/pii/S0008622311001187?via%3Dihub
Citation
CARBON, v.49, no.8, pp.2615 - 2623
Abstract
The morphology and thermomechanical properties of composites of poly(methyl methacrylate) (PMMA) and chemically modified graphene (CMG) fillers were investigated. For composites made by in situ polymerization, large shifts in the glass transition temperature were observed with loadings as low as 0.05 wt.% for both chemically-reduced graphene oxide (RG-O) and graphene oxide (G-O)-filled composites. The elastic modulus of the composites improved by as much as 28% at just 1 wt.% loading. Mori-Tanaka theory was used to quantify dispersion, suggesting platelet aspect ratios greater than 100 at low loadings and a lower quality of dispersion at higher loadings. Fracture strength increased for G-O/PMMA composites but decreased for RG-O/PMMA composites. Wide angle X-ray scattering suggested an exfoliated morphology of both types of CMG fillers dispersed in the PMMA matrix, while transmission electron microscopy revealed that the platelets adopt a wrinkled morphology when dispersed in the matrix. Both techniques suggested similar exfoliation and dispersion of both types of CMG filler. Structural characterization of the resulting composites using gel permeation chromatography and solid state nuclear magnetic resonance showed no change in the polymer structure with increased loading of CMG filler.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
0008-6223
Keyword
EXFOLIATED GRAPHITE OXIDESINGLE GRAPHENE SHEETSAQUEOUS DISPERSIONSELASTIC PROPERTIESORGANIC-SOLVENTSNANOCOMPOSITESNANOSHEETSREDUCTIONINCLUSIONS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.