File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이현욱

Lee, Hyun-Wook
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2465 -
dc.citation.number 9 -
dc.citation.startPage 2450 -
dc.citation.title JOULE -
dc.citation.volume 5 -
dc.contributor.author Han, Sang Yun -
dc.contributor.author Lee, Chanhee -
dc.contributor.author Lewis, John A. -
dc.contributor.author Yeh, David -
dc.contributor.author Liu, Yuhgene -
dc.contributor.author Lee, Hyun-Wook -
dc.contributor.author McDowell, Matthew T. -
dc.date.accessioned 2023-12-21T15:14:45Z -
dc.date.available 2023-12-21T15:14:45Z -
dc.date.created 2021-10-18 -
dc.date.issued 2021-09 -
dc.description.abstract Alloy anodes hold promise for enabling high-energy solid-state batteries, but their substantial volume changes during charge/discharge can cause structural and mechanical degradation within the all-solid-state environment. It is therefore critical to understand how material evolution and mechanical stress within alloy-anode-based solid-state batteries are related. Here, we investigate stress (stack pressure) evolution within batteries with composite anodes that contain activematerials such as silicon, tin, and antimony, along with an argyrodite-type electrolyte and LiNi0.33Mn0.33Co0.33O2 cathodes. We measure megapascal-level stress changes that are dependent on the amount of lithium transferred, and we find that stress signatures and hysteresis during charge/discharge are affected by the electrode structure and the active material. We furthermore show that these composite-alloy anodes enable stable long-term cycling with associated cyclic-stress changes. These findings provide new understanding of the relationship between electrochemistry and mechanics within solid-state batteries, which is important because megapascal-level stack pressures are generally necessary for optimal performance. -
dc.identifier.bibliographicCitation JOULE, v.5, no.9, pp.2450 - 2465 -
dc.identifier.doi 10.1016/j.joule.2021.07.002 -
dc.identifier.issn 2542-4351 -
dc.identifier.scopusid 2-s2.0-85114692871 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54168 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2542435121003147?via%3Dihub -
dc.identifier.wosid 000696854300017 -
dc.language 영어 -
dc.publisher CELL PRESS -
dc.title Stress evolution during cycling of alloy-anode solid-state batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus LI -
dc.subject.keywordPlus ELECTROLYTES -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus LITHIATION -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus MORPHOLOGY -
dc.subject.keywordPlus EXPANSION -
dc.subject.keywordPlus SILICON -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.