File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 39229 -
dc.citation.number 33 -
dc.citation.startPage 39215 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 13 -
dc.contributor.author Masoumi, Zohreh -
dc.contributor.author Tayebi, Meysam -
dc.contributor.author Kolaei, Morteza -
dc.contributor.author Tayyebi, Ahmad -
dc.contributor.author Ryu, Hongsun -
dc.contributor.author Jang, Joon, I -
dc.contributor.author Lee, Byeong-Kyu -
dc.date.accessioned 2023-12-21T15:20:35Z -
dc.date.available 2023-12-21T15:20:35Z -
dc.date.created 2021-10-01 -
dc.date.issued 2021-08 -
dc.description.abstract In this study, a facile approach has been successfully applied to synthesize a W-doped Fe2O3/MoS2 core-shell electrode with unique nanostructure modifications for photoelectrochemical performance. A two-dimensional (2D) structure of molybdenum disulfide (MoS2) and tungsten (W)-doped hematite (W:alpha-Fe2O3) overcomes the drawbacks of the a-Fe2O3 and MoS2 semiconductor through simple and facile processes to improve the photoelectrochemical (PEC) performance. The highest photocurrent density of the 0.5W:alpha-Fe2O3/MoS2 photoanode is 1.83 mA.cm(-2) at 1.23 V vs reversible hydrogen electrode (RHE) under 100 mW.cm(2) illumination, which is higher than those of 0.5W:alpha-Fe2O3 and pure alpha-Fe2O3 electrodes. The overall water splitting was evaluated by measuring the H-2 and O-2 evolution, which after 2 h of irradiation for 0.5W:alpha-Fe2O3/MoS2 was determined to be 49 and 23.8 mu mol.cm(-2), respectively. The optimized combination of the heterojunction and metal doping on pure alpha-Fe2O3 (0.5W:alpha-Fe2O3/MoS2 photoanode) showed an incident photon-to-electron conversion efficiency (IPCE) of 37% and an applied bias photon-to-current efficiency (ABPE) of 26%, which are around 5.2 and 13 times higher than those of 0.5W:alpha-Fe2O3, respectively. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.13, no.33, pp.39215 - 39229 -
dc.identifier.doi 10.1021/acsami.1c08139 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85114042066 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54076 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsami.1c08139 -
dc.identifier.wosid 000691785200026 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:alpha-Fe2O3/MoS2 Photoanode: A Collaborative Approach of MoS2 as a Heterojunction and W as a Metal Dopant -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor charge separation -
dc.subject.keywordAuthor donor concentration -
dc.subject.keywordAuthor hematite nanorods -
dc.subject.keywordAuthor MoS2nanosheets -
dc.subject.keywordAuthor photoelectrochemical (PEC) cells -
dc.subject.keywordPlus DOPED BIVO4 PHOTOANODES -
dc.subject.keywordPlus WATER OXIDATION -
dc.subject.keywordPlus WO3/FE2O3 HETEROJUNCTION -
dc.subject.keywordPlus BISMUTH VANADATE -
dc.subject.keywordPlus HEMATITE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus ALPHA-FE2O3 -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus OXYGEN -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.