File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이종훈

Lee, Zonghoon
Atomic-Scale Electron Microscopy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 21630 -
dc.citation.number 33 -
dc.citation.startPage 21623 -
dc.citation.title ACS OMEGA -
dc.citation.volume 6 -
dc.contributor.author Lee, Yeongdong -
dc.contributor.author Lee, Jongyeong -
dc.contributor.author Chung, Handolsam -
dc.contributor.author Kim, Jaemin -
dc.contributor.author Lee, Zonghoon -
dc.date.accessioned 2023-12-21T15:36:39Z -
dc.date.available 2023-12-21T15:36:39Z -
dc.date.created 2021-09-16 -
dc.date.issued 2021-08 -
dc.description.abstract Atomic-scale information is essential for understanding and designing unique structures and properties of two-dimensional (2D) materials. Recent developments in in situ transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable research to provide abundant insights into the growth of nanomaterials. In this study, 2D MoS2 is synthesized on a suspended graphene substrate inside a TEM column through thermolysis of the ammonium tetrathiomolybdate (NH4)(2)MoS4 precursor at 500 degrees C. To avoid misinterpretation of the in situ STEM images, a deep-learning framework, DeepSTEM, is developed. The DeepSTEM framework successfully reconstructs an object function in atomic-resolution STEM imaging for accurate determination of the atomic structure and dynamic analysis. In situ STEM imaging with DeepSTEM enables observation of the edge configuration, formation, and reknitting progress of MoS2 clusters with the formation of a mirror twin boundary. The synthesized MoS2/graphene heterostructure shows various twist angles, as revealed by atomic-resolution TEM. This deep-learning framework-assisted in situ STEM imaging provides atomic information for in-depth studies on the growth and structure of 2D materials and shows the potential use of deep-learning techniques in 2D material research. -
dc.identifier.bibliographicCitation ACS OMEGA, v.6, no.33, pp.21623 - 21630 -
dc.identifier.doi 10.1021/acsomega.1c03002 -
dc.identifier.issn 2470-1343 -
dc.identifier.scopusid 2-s2.0-85114026964 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54009 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsomega.1c03002 -
dc.identifier.wosid 000691300900042 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title In Situ Scanning Transmission Electron Microscopy Study of MoS2 Formation on Graphene with a Deep-Learning Framework -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus DER-WAALS EPITAXY -
dc.subject.keywordPlus CHEMICAL-VAPOR-DEPOSITION -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus HETEROSTRUCTURES -
dc.subject.keywordPlus SUPERLUBRICITY -
dc.subject.keywordPlus RECONSTRUCTION -
dc.subject.keywordPlus GROWTH -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.