File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 6866 -
dc.citation.number 16 -
dc.citation.startPage 6859 -
dc.citation.title NANO LETTERS -
dc.citation.volume 21 -
dc.contributor.author Chen, Jingzhao -
dc.contributor.author Zhao, Chao -
dc.contributor.author Xue, Dingchuan -
dc.contributor.author Zhang, Liqiang -
dc.contributor.author Yang, Tingting -
dc.contributor.author Du, Congcong -
dc.contributor.author Zhang, Xuedong -
dc.contributor.author Fang, Ruyue -
dc.contributor.author Guo, Baiyu -
dc.contributor.author Ye, Hongjun -
dc.contributor.author Li, Hui -
dc.contributor.author Dai, Qiushi -
dc.contributor.author Zhao, Jun -
dc.contributor.author Li, Yanshuai -
dc.contributor.author Harris, Stephen J. -
dc.contributor.author Tang, Yongfu -
dc.contributor.author Ding, Feng -
dc.contributor.author Zhang, Sulin -
dc.contributor.author Huang, Jianyu -
dc.date.accessioned 2023-12-21T15:21:11Z -
dc.date.available 2023-12-21T15:21:11Z -
dc.date.created 2021-09-16 -
dc.date.issued 2021-08 -
dc.description.abstract The increasing demand for safe and dense energy storage has shifted research focus from liquid electrolyte-based Li-ion batteries toward solid-state batteries (SSBs). However, the application of SSBs is impeded by uncontrollable Li dendrite growth and short circuiting, the mechanism of which remains elusive. Herein, we conceptualize a scheme to visualize Li deposition in the confined space inside carbon nanotubes (CNTs) to mimic Li deposition dynamics inside solid electrolyte (SE) cracks, where the high-strength CNT walls mimic the mechanically strong SEs. We observed that the deposited Li propagates as a creeping solid in the CNTs, presenting an effective pathway for stress relaxation. When the stress-relaxation pathway is blocked, the Li deposition-induced stress reaches the gigapascal level and causes CNT fracture. Mechanics analysis suggests that interfacial lithiophilicity critically governs Li deposition dynamics and stress relaxation. Our study offers critical strategies for suppressing Li dendritic growth and constructing high-energy-density, electrochemically and mechanically robust SSBs. -
dc.identifier.bibliographicCitation NANO LETTERS, v.21, no.16, pp.6859 - 6866 -
dc.identifier.doi 10.1021/acs.nanolett.1c01910 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85113482269 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54005 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.nanolett.1c01910 -
dc.identifier.wosid 000691792400018 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Lithium Deposition-Induced Fracture of Carbon Nanotubes and Its Implication to Solid-State Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor solid-state batteries -
dc.subject.keywordAuthor Li dendrite -
dc.subject.keywordAuthor Li propagation -
dc.subject.keywordAuthor deposition stress -
dc.subject.keywordAuthor CNT fracture -
dc.subject.keywordPlus METAL GROWTH -
dc.subject.keywordPlus MECHANISM -
dc.subject.keywordPlus PENETRATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.