File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신태주

Shin, Tae Joo
Synchrotron Radiation Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 11897 -
dc.citation.number 7 -
dc.citation.startPage 11891 -
dc.citation.title ACS NANO -
dc.citation.volume 15 -
dc.contributor.author Li, Feng -
dc.contributor.author Han, Gao-Feng -
dc.contributor.author Jeon, Jong-Pil -
dc.contributor.author Shin, Tae Joo -
dc.contributor.author Fu, Zhengping -
dc.contributor.author Lu, Yalin -
dc.contributor.author Baek, Jong-Beom -
dc.date.accessioned 2023-12-21T15:38:04Z -
dc.date.available 2023-12-21T15:38:04Z -
dc.date.created 2021-08-26 -
dc.date.issued 2021-07 -
dc.description.abstract Oxygen evolution catalysis plays a crucial role in the solarto-fuel conversion for green energy applications. However, developing efficient and stable catalysts for the oxygen evolution catalysis remains a great challenge. Here, we successfully activate an inefficient oxygen evolution catalyst using a simple single atom tailoring strategy. The Rh element with its unfilled 4d(8) electron configuration was selected to atomically implant into a Cu oxide matrix, which has a filled 3d(10) electron configuration. The hetero-Rh single atom (SA) migration was achieved by dispersing Cu2O nanocubes in a RhCl3 aqueous solution, enabling an ion exchange process. The activated catalyst (Cu2O-RhSA) exhibited significantly enhanced catalytic activity toward oxygen evolution in alkaline media, surpassing the performance of pristine Cu2O nanocubes and commercial IrO2. A theoretical study further confirmed that the migrated hetero-Rh SAs can tailor the interaction between the Cu and O sites, modulating the electron density distribution on the surface of Cu2O, leading to a more favorable oxygen evolution process. -
dc.identifier.bibliographicCitation ACS NANO, v.15, no.7, pp.11891 - 11897 -
dc.identifier.doi 10.1021/acsnano.1c02989 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-85110999213 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/53788 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsnano.1c02989 -
dc.identifier.wosid 000679406500081 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor surface chemistry -
dc.subject.keywordAuthor electronic modulation -
dc.subject.keywordAuthor electrochemistry -
dc.subject.keywordAuthor oxygen evolution reaction -
dc.subject.keywordAuthor energy conversion -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus WATER OXIDATION -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus NI -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus METALS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.