File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이현욱

Lee, Hyun-Wook
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 138865 -
dc.citation.title ELECTROCHIMICA ACTA -
dc.citation.volume 390 -
dc.contributor.author Jayasubramaniyan, S. -
dc.contributor.author Balasundari, S. -
dc.contributor.author Yeom, Su Jeong -
dc.contributor.author Naresh, N. -
dc.contributor.author Rani, T. -
dc.contributor.author Rapaka, E. Vijayakrishna -
dc.contributor.author Satyanarayana, N. -
dc.contributor.author Lee, Hyun-Wook -
dc.contributor.author Muralidharan, P. -
dc.date.accessioned 2023-12-21T15:17:08Z -
dc.date.available 2023-12-21T15:17:08Z -
dc.date.created 2021-08-26 -
dc.date.issued 2021-09 -
dc.description.abstract Supercapacitors are considered to be promising energy storage devices because of their long cycle stability, fast charge-discharge, and high power density. However, energy storage performance predominantly depends on the morphology and nanostructure of electrode materials. The material with porous nanostructures has attracted great interest because of more active sites for the faradaic reactions which facilitate the utilization of the full capacity of the active materials. Herein, porous CuCo2O4 (CCO) nanorods dispersed on reduced graphene oxide (rGO) nanosheets (CCO/rGO) has been prepared in a short duration via a facile single-step microwave hydrothermal method. The porous feature of the CCO nanorod provides more reactive sites for faradaic reaction and facilitates the electrolyte penetration into the inner region of the electrode. Also, the incorporation of rGO provides a more conductive network that facilitates the collection and transportation of electrons during cycling. Electrochemical performance of the CCO/rGO composite exhibits a specific capacity of 677 C g(-1) at a current density of 1 A g(-1) and retained excellent cycling stability of 97.4% after 2000 cycles at a high current density of 10 A g(-1). This work demonstrated a simple, effective, and cost-cut method to prepare porous CuCo2O4 on rGO electrodes in a short time duration with the enhanced electrochemical performance for hybrid supercapacitor applications. (C) 2021 Elsevier Ltd. All rights reserved. -
dc.identifier.bibliographicCitation ELECTROCHIMICA ACTA, v.390, pp.138865 -
dc.identifier.doi 10.1016/j.electacta.2021.138865 -
dc.identifier.issn 0013-4686 -
dc.identifier.scopusid 2-s2.0-85109698521 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/53776 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0013468621011555?via%3Dihub -
dc.identifier.wosid 000683544200001 -
dc.language 영어 -
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD -
dc.title Synthesis of porous CuCo2O4 nanorods/reduced graphene oxide composites via a facile microwave hydrothermal method for high-performance hybrid supercapacitor applications -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Electrochemistry -
dc.relation.journalResearchArea Electrochemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor One-dimensional porous nanorods -
dc.subject.keywordAuthor Microwave hydrothermal -
dc.subject.keywordAuthor CuCo2O4/reduced graphene oxide -
dc.subject.keywordAuthor High capacity retention -
dc.subject.keywordAuthor Hybrid Supercapacitors -
dc.subject.keywordPlus HIGH ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus NI FOAM -
dc.subject.keywordPlus HIGH AREAL -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus NANOWIRES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.