File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

배준범

Bae, Joonbum
Bio-robotics and Control Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Marangoni Effect Inspired Robotic Self-propulsion Over a Water Surface using a Flow-imbibition-powered Microfluidic Pump

Author(s)
Kwak, BokeonChoi, SoyoungMaeng, JiyeonBae, Joonbum
Issued Date
2021-09
DOI
10.1038/s41598-021-96553-8
URI
https://scholarworks.unist.ac.kr/handle/201301/53411
Fulltext
https://www.nature.com/articles/s41598-021-96553-8
Citation
SCIENTIFIC REPORTS, v.11, no.1, pp.17469
Abstract
Certain aquatic insects rapidly traverse water by secreting surfactants that exploit the Marangoni effect, inspiring the development of many self-propulsion systems. In this research, to demonstrate a new way of delivering liquid fuel to a water surface for Marangoni propulsion, a microfluidic pump driven by the flow-imbibition by a porous medium was integrated to create a novel self-propelling robot. After triggered by a small magnet, the liquid fuel stored in a microchannel is autonomously transported to an outlet in a mechanically tunable manner. We also comprehensively analyzed the effects of various design parameters on the robot's locomotory behavior. It was shown that the traveled distance, energy density of fuel, operation time, and motion directionality were tunable by adjusting porous media, nozzle diameter, keel-extrusion, and the distance between the nozzle and water surface. The utilization of a microfluidic device in bioinspired robot is expected to bring out new possibilities in future development of self-propulsion system.
Publisher
NATURE RESEARCH
ISSN
2045-2322
Keyword
DIRECTIONAL MOTIONDRIVEN MOTIONWALKINGBEETLESDESIGNSOFT

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.