File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이덕중

Lee, Deokjung
Computational Reactor physics & Experiment Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2802 -
dc.citation.number 9 -
dc.citation.startPage 2788 -
dc.citation.title NUCLEAR ENGINEERING AND TECHNOLOGY -
dc.citation.volume 53 -
dc.contributor.author Nguyen, Tung Dong Cao -
dc.contributor.author Lee, Hyunsuk -
dc.contributor.author Lee, Deokjung -
dc.date.accessioned 2023-12-21T15:18:09Z -
dc.date.available 2023-12-21T15:18:09Z -
dc.date.created 2021-08-10 -
dc.date.issued 2021-09 -
dc.description.abstract Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-360 0). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and sto-chastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accu-racy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors. (C) 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. -
dc.identifier.bibliographicCitation NUCLEAR ENGINEERING AND TECHNOLOGY, v.53, no.9, pp.2788 - 2802 -
dc.identifier.doi 10.1016/j.net.2021.03.005 -
dc.identifier.issn 1738-5733 -
dc.identifier.scopusid 2-s2.0-85104489677 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/53409 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S1738573321001479?via%3Dihub -
dc.identifier.wosid 000678338400003 -
dc.language 영어 -
dc.publisher KOREAN NUCLEAR SOC -
dc.title Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Nuclear Science & Technology -
dc.identifier.kciid ART002747592 -
dc.relation.journalResearchArea Nuclear Science & Technology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Monte Carlo -
dc.subject.keywordAuthor Nodal diffusion -
dc.subject.keywordAuthor Multigroup -
dc.subject.keywordAuthor Cross section generation -
dc.subject.keywordAuthor SFR -
dc.subject.keywordAuthor MCS -
dc.subject.keywordPlus VALIDATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.