File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김남훈

Kim, Namhun
UNIST Computer-Integrated Manufacturing Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1157 -
dc.citation.number 4 -
dc.citation.startPage 1141 -
dc.citation.title JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING -
dc.citation.volume 8 -
dc.contributor.author Ransikarbum, Kasin -
dc.contributor.author Pitakaso, Rapeepan -
dc.contributor.author Kim, Namhun -
dc.contributor.author Ma, Jungmok -
dc.date.accessioned 2023-12-21T15:37:15Z -
dc.date.available 2023-12-21T15:37:15Z -
dc.date.created 2021-07-13 -
dc.date.issued 2021-08 -
dc.description.abstract Additive manufacturing (AM) or three-dimensional printing (3DP) refers to producing objects from digital information layer by layer. Despite recent advancements in AM, process planning in AM has not received much attention compared to subtractive manufacturing. One of the critical process planning issues in AM is deciding part orientation. In this research, the integrative framework of multicriteria decision making for part orientation analysis in AM is investigated. Initially, quantitative data are assessed using the data envelopment analysis (DEA) technique without preferences from a decision maker. In contrast, a decision maker's preferences are qualitatively analysed using the analytic hierarchy process (AHP) technique. Then, the proposed framework combining explicit data as in DEA, implicit preference as in AHP, and linear normalization (LN) technique is used, which reflects both preference and objective data in supporting decision making for 3DP part orientation. Two particular AM technologies, namely Fused Deposition Modelling and Selective Laser Sintering, are used as a case study to illustrate the proposed algorithm, which is further verified with experts to improve process planning for AM. -
dc.identifier.bibliographicCitation JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, v.8, no.4, pp.1141 - 1157 -
dc.identifier.doi 10.1093/jcde/qwab037 -
dc.identifier.issn 2288-5048 -
dc.identifier.scopusid 2-s2.0-85111902975 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/53193 -
dc.identifier.url https://academic.oup.com/jcde/article/8/4/1141/6317988 -
dc.identifier.wosid 000685083100005 -
dc.language 영어 -
dc.publisher 한국CDE학회 -
dc.title Multicriteria decision analysis framework for part orientation analysis in additive manufacturing -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Computer Science, Interdisciplinary ApplicationsEngineering, Multidisciplinary -
dc.relation.journalResearchArea Computer ScienceEngineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
dc.subject.keywordAuthor multicriteria decision makingdata envelopment analysis (DEA)analytic hierarchy processlinear normalizationorientation selectionadditive manufacturing -
dc.subject.keywordPlus DATA ENVELOPMENT ANALYSISBUILD ORIENTATIONMULTIOBJECTIVE OPTIMIZATIONHIERARCHY PROCESSDESIGNAHPNETWORKSELECTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.