File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정성균

Jung, Sung-Kyun
Energy Materials Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1782 -
dc.citation.number 9 -
dc.citation.startPage 1771 -
dc.citation.title JOULE -
dc.citation.volume 2 -
dc.contributor.author Kwon, Giyun -
dc.contributor.author Lee, Sechan -
dc.contributor.author Hwang, Jinyeon -
dc.contributor.author Shim, Hyun-Soo -
dc.contributor.author Lee, Byungju -
dc.contributor.author Lee, Myeong Hwan -
dc.contributor.author Ko, Youngmin -
dc.contributor.author Jung, Sung-Kyun -
dc.contributor.author Ku, Kyojin -
dc.contributor.author Hong, Jihyun -
dc.contributor.author Kang, Kisuk -
dc.date.accessioned 2023-12-21T20:11:41Z -
dc.date.available 2023-12-21T20:11:41Z -
dc.date.created 2021-06-03 -
dc.date.issued 2018-09 -
dc.description.abstract Redox flow batteries (RFBs) are some of the most promising energy storage systems because of their design flexibility; however, their low energy density is a major drawback limiting widespread application. Most conventional approaches to increase the energy density have involved exploiting high-concentration electrolytes. However, this approach results in many technical issues, such as sluggish kinetics. We propose a strategy of boosting the energy density by exploiting a multi-redox phenazine molecule (5,10-dihydro-5,10-dimethyl phenazine [DMPZ]). DMPZ exhibits double-redox activity at -0.15 and 0.61 V versus Ag/Ag+ with remarkable kinetics and chemical stability. Coupled with 9-fluorenone (FL), the DMPZ/FL flow cell can provide the highest energy density per mole 85 W hr mol(-1)) ever reported for RFBs. Furthermore, the marked color change of DMPZ enables the state of charge to be precisely visualized. This novel strategy for a multi-redox material can provide a potential pathway toward high-energy-density RFBs. -
dc.identifier.bibliographicCitation JOULE, v.2, no.9, pp.1771 - 1782 -
dc.identifier.doi 10.1016/j.joule.2018.0.5.014 -
dc.identifier.issn 2542-4351 -
dc.identifier.scopusid 2-s2.0-85048530724 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/53085 -
dc.identifier.wosid 000445021000015 -
dc.language 영어 -
dc.publisher CELL PRESS -
dc.title Multi-redox Molecule for High-Energy Redox Flow Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ELECTROCHEMICAL PROPERTIES -
dc.subject.keywordPlus ELECTRON-TRANSFER -
dc.subject.keywordPlus PHENAZINE -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus DENSITY -
dc.subject.keywordPlus SPECTRA -
dc.subject.keywordPlus BIOSYNTHESIS -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CATHOLYTE -
dc.subject.keywordPlus PROGRESS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.