File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정준우

Jeong, Joonwoo
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2096 -
dc.citation.number 6 -
dc.citation.startPage 2083 -
dc.citation.title MATTER -
dc.citation.volume 4 -
dc.contributor.author Im, Jae Kwan -
dc.contributor.author Jeong, Leekyo -
dc.contributor.author Crha, Jan -
dc.contributor.author Trtik, Pavel -
dc.contributor.author Jeong, Joonwoo -
dc.date.accessioned 2023-12-21T15:44:11Z -
dc.date.available 2023-12-21T15:44:11Z -
dc.date.created 2021-06-06 -
dc.date.issued 2021-06 -
dc.description.abstract The spatiotemporal distribution of multiple components and phases governs their evaporation and condensation at the liquid-vapor interface. However, in situ methods to characterize the distribution remain challenging, despite the significance of understanding the ubiquitous mass transport phenomena. Here, we introduce high-resolution neutron imaging as a versatile method to quantify the composition of a sessile droplet in situ, under evaporation and condensation. To prove the concept, we perform a neutron transmittance analysis of a sessile heavy water (D2O) droplet and measure the fraction change of H2O to D2O by the sorption of ambient H2O vapor during the evaporation. Our observations are consistent with ex situ Fourier transform infrared spectroscopy measurements and our diffusion-based numerical model. Our results demonstrate that, with deuterated components having a physicochemical similarity with their hydrogenated counterparts, high-resolution neutron imaging can trace composition changes in nonequilibrium phenomena, such as evaporation and condensation. -
dc.identifier.bibliographicCitation MATTER, v.4, no.6, pp.2083 - 2096 -
dc.identifier.doi 10.1016/j.matt.2021.04.013 -
dc.identifier.issn 2590-2393 -
dc.identifier.scopusid 2-s2.0-85106869379 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/52993 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2590238521001740?via%3Dihub -
dc.identifier.wosid 000657455600003 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title High-resolution neutron imaging reveals kinetics of water vapor uptake into a sessile water droplet -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus CHEMICAL-REACTIONS -
dc.subject.keywordPlus MARANGONI-FLOW -
dc.subject.keywordPlus HEAVY-WATER -
dc.subject.keywordPlus EVAPORATION -
dc.subject.keywordPlus PATTERNS -
dc.subject.keywordPlus PRESSURE -
dc.subject.keywordPlus BEAMLINE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.