File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김진영

Kim, Jin Young
Next Generation Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 402 -
dc.citation.number 4 -
dc.citation.startPage 395 -
dc.citation.title ACS MATERIALS LETTERS -
dc.citation.volume 2 -
dc.contributor.author Lee, Jaewon -
dc.contributor.author Song, Seyeong -
dc.contributor.author Huang, Jianfei -
dc.contributor.author Du, Zhifang -
dc.contributor.author Lee, Hansol -
dc.contributor.author Zhu, Ziyue -
dc.contributor.author Ko, Seo-Jin -
dc.contributor.author Thuc-Quyen Nguyen -
dc.contributor.author Kim, Jin Young -
dc.contributor.author Cho, Kilwon -
dc.contributor.author Bazan, Guillermo C. -
dc.date.accessioned 2023-12-21T17:40:31Z -
dc.date.available 2023-12-21T17:40:31Z -
dc.date.created 2021-05-04 -
dc.date.issued 2020-04 -
dc.description.abstract A series of A-pi-D-pi-A-type nonfullerene acceptors (NFAs) was designed and synthesized with the goal of optimizing light absorption and energy losses in near-infrared (NIR) organic solar cells (OSCs) principally through the use of side-chain engineering. Specific molecules include p-O1, o-IO1, p-IO2, and o-IO2 with optical bandgaps of 1.34, 1.28, 1.24, and 1.20 eV, respectively. Manipulating the optoelectronic properties and intermolecular organization by substituting bulky phenylhexyl (p-) for linear octyl chains (o-) and replacing bisalkoxy (-O2) with alkyl-alkoxy combination (-O1) allows one to target energy bandgaps and achieve a favorable bulk heterojunction morphology when in the presence of the donor polymer PTB7-Th. Solar cells based on o-IO1 and PTB7-Th exhibit an optimal power conversion efficiency of 13.1%. The excellent photovoltaic performance obtained with the o-IO1 acceptor can be attributed to a short-circuit current of 26.3 mA cm(-2) and energy losses on the order of 0.54 eV. These results further highlight how side-chain engineering is a straightforward strategy to tune the molecular design of n-type molecular semiconductors, particularly in the context of NIR high-efficiency organic photovoltaics. -
dc.identifier.bibliographicCitation ACS MATERIALS LETTERS, v.2, no.4, pp.395 - 402 -
dc.identifier.doi 10.1021/acsmaterialslett.9b00512 -
dc.identifier.issn 2639-4979 -
dc.identifier.scopusid 2-s2.0-85084220573 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/52831 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsmaterialslett.9b00512 -
dc.identifier.wosid 000526398200013 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus POLYMER SOLAR-CELLS -
dc.subject.keywordPlus CHARGE SEPARATION -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus DESIGN -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.