File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 4951 -
dc.citation.number 8 -
dc.citation.startPage 4945 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 9 -
dc.contributor.author Park, Sang Heon -
dc.contributor.author Jo, Tae Hwan -
dc.contributor.author Lee, Min Hee -
dc.contributor.author Kawashima, Kenta -
dc.contributor.author Mullins, C. Buddie -
dc.contributor.author Lim, Hyung-Kyu -
dc.contributor.author Youn, Duck Hyun -
dc.date.accessioned 2023-12-21T16:13:53Z -
dc.date.available 2023-12-21T16:13:53Z -
dc.date.created 2021-04-14 -
dc.date.issued 2021-02 -
dc.description.abstract This paper reports a highly active and stable nonprecious metal electrocatalyst based on bimetallic nanoscale nickel molybdenum nitride developed for the hydrogen evolution reaction (HER). A composite of 7 nm Ni2Mo3N nanoparticles grown on nickel foam (Ni2Mo3N/NF) was prepared through a simple and economical synthetic method involving one-step annealing of Ni foam, MoCl5, and urea without a Ni precursor. The Ni2Mo3N/NF exhibits high activity with low overpotential (eta(10) of 21.3 mV and eta(100) of 123.8 mV) and excellent stability for the HER, achieving one of the best performances among state-of-the-art transition metal nitride based catalysts in alkaline media. Supporting density functional theory (DFT) calculations indicate that N sites in Ni2Mo3N with a N-Mo coordination number of four have a hydrogen adsorption energy close to that of Pt and hence may be responsible for the enhanced HER performance. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.9, no.8, pp.4945 - 4951 -
dc.identifier.doi 10.1039/d0ta10090k -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-85102010164 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/52704 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2021/TA/D0TA10090K -
dc.identifier.wosid 000624755900038 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Highly active and stable nickel-molybdenum nitride (Ni2Mo3N) electrocatalyst for hydrogen evolution -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.