File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 13 -
dc.citation.startPage eabd7921 -
dc.citation.title SCIENCE ADVANCES -
dc.citation.volume 7 -
dc.contributor.author Kim, Yoon Seok -
dc.contributor.author Kang, Sojung -
dc.contributor.author So, Jae-Pil -
dc.contributor.author Kim, Jong Chan -
dc.contributor.author Kim, Kangwon -
dc.contributor.author Yang, Seunghoon -
dc.contributor.author Jung, Yeonjoon -
dc.contributor.author Shin, Yongjun -
dc.contributor.author Lee, Seongwon -
dc.contributor.author Lee, Donghun -
dc.contributor.author Park, Jin-Woo -
dc.contributor.author Cheong, Hyeonsik -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Park, Hong-Gyu -
dc.contributor.author Lee, Gwan-Hyoung -
dc.contributor.author Lee, Chul-Ho -
dc.date.accessioned 2023-12-21T16:10:02Z -
dc.date.available 2023-12-21T16:10:02Z -
dc.date.created 2021-04-14 -
dc.date.issued 2021-03 -
dc.description.abstract Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic-layer-confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WOX/WSe2 hetero-bilayer formed by monolithic oxidation of the WSe2 bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered hetero-structures for 2D quantum optoelectronics. -
dc.identifier.bibliographicCitation SCIENCE ADVANCES, v.7, no.13, pp.eabd7921 -
dc.identifier.doi 10.1126/sciadv.abd7921 -
dc.identifier.issn 2375-2548 -
dc.identifier.scopusid 2-s2.0-85103526062 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/52692 -
dc.identifier.url https://advances.sciencemag.org/content/7/13/eabd7921 -
dc.identifier.wosid 000633443600013 -
dc.language 영어 -
dc.publisher AMER ASSOC ADVANCEMENT SCIENCE -
dc.title Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.