File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박경덕

Park, Kyoung-Duck
Nano-PhotoEnergy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 528 -
dc.citation.number 1 -
dc.citation.startPage 522 -
dc.citation.title NANO LETTERS -
dc.citation.volume 21 -
dc.contributor.author May, Molly A. -
dc.contributor.author Jiang, Tao -
dc.contributor.author Du, Chenfeng -
dc.contributor.author Park, Kyoung-Duck -
dc.contributor.author Xu, Xiaodong -
dc.contributor.author Belyanin, Alexey -
dc.contributor.author Raschke, Markus B. -
dc.date.accessioned 2023-12-21T16:21:48Z -
dc.date.available 2023-12-21T16:21:48Z -
dc.date.created 2021-03-25 -
dc.date.issued 2021-01 -
dc.description.abstract Transition-metal dichalcogenide heterostructures are an emergent platform for novel many-body states from exciton condensates to nanolasers. However, their exciton dynamics are difficult to disentangle due to multiple competing processes with time scales varying over many orders of magnitude. Using a configurable nano-optical cavity based on a plasmonic scanning probe tip, the radiative (rad) and nonradiative (nrad) relaxation of intra- and interlayer excitons is controlled. Tuning their relative rates in a WSe2/MoSe2 heterobilayer over 6 orders of magnitude in tip-enhanced photoluminescence spectroscopy reveals a cavityinduced crossover from nonradiative quenching to Purcell-enhanced radiation. Rate equation modeling with the interlayer charge transfer time as a reference clock allows for a comprehensive determination from the long interlayer exciton (IX) radiative lifetime tau(rad)(IX) = (94 +/- 27) ns to the 5 orders of Irad magnitude faster competing nonradiative lifetime tau(rad)(IX) = (0.6 +/- 0.2) ps. This approach of nanocavity clock spectroscopy is generally applicable to a wide range of excitonic systems with competing decay pathways. -
dc.identifier.bibliographicCitation NANO LETTERS, v.21, no.1, pp.522 - 528 -
dc.identifier.doi 10.1021/acs.nanolett.0c03979 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85098788607 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/52566 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03979 -
dc.identifier.wosid 000611082000070 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe2/MoSe2 Heterobilayers -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Interlayer exciton -
dc.subject.keywordAuthor exciton lifetime -
dc.subject.keywordAuthor plasmonic nanocavity -
dc.subject.keywordAuthor near-field spectroscopy -
dc.subject.keywordAuthor tip-enhanced photoluminescence -
dc.subject.keywordPlus ULTRAFAST CHARGE-TRANSFER -
dc.subject.keywordPlus INDIRECT INTERLAYER EXCITONS -
dc.subject.keywordPlus MODE VOLUMES -
dc.subject.keywordPlus WAALS -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus MOS2/WS2 -
dc.subject.keywordPlus HETEROSTRUCTURES -
dc.subject.keywordPlus MONOLAYER -
dc.subject.keywordPlus EMISSION -
dc.subject.keywordPlus EMITTERS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.