File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 146 -
dc.citation.startPage 139 -
dc.citation.title ENERGY STORAGE MATERIALS -
dc.citation.volume 36 -
dc.contributor.author Ryu, Jaegeon -
dc.contributor.author Bok, Taesoo -
dc.contributor.author Joo, Se Hun -
dc.contributor.author Yoo, Seokkeun -
dc.contributor.author Song, Gyujin -
dc.contributor.author Kim, Su Hwan -
dc.contributor.author Choi, Sungho -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Kim, Min Gyu -
dc.contributor.author Kang, Seok Ju -
dc.contributor.author Wang, Chongmin -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T16:08:17Z -
dc.date.available 2023-12-21T16:08:17Z -
dc.date.created 2021-01-08 -
dc.date.issued 2021-04 -
dc.description.abstract Practically adapted physical integration of silicon and carbon predominates as a viable solution to realize high energy density batteries, however, the composite structure is vulnerable to fracture. Here we report a molecular-level mixed silicon-carbon composite anode through thermal pyrolysis of silane and subsequent mechanical mill, entailed by electrochemical dissociation and reclustering of such disordered silicon-carbon bonds during the cycles. Lithium insertion induces heterolytic fission of the bonds into sub-nanometre silicon particles segregated by redox-active carbon framework validated by microscopy analysis and reactive molecular dynamics simulation. The embedded structure with a high packing density of silicon prevents detrimental electrochemical coalescence and direct contact to a liquid electrolyte to stabilize the interfaces, while three-dimensional (3D) carbon framework buffers large volume expansion of silicon to enable an extended full battery cycling. -
dc.identifier.bibliographicCitation ENERGY STORAGE MATERIALS, v.36, pp.139 - 146 -
dc.identifier.doi 10.1016/j.ensm.2020.12.023 -
dc.identifier.issn 2405-8297 -
dc.identifier.scopusid 2-s2.0-85098715181 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/49845 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2405829720304864 -
dc.identifier.wosid 000620584300012 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.