File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

BielawskiChristopher W

Bielawski, Christopher W.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 15740 -
dc.citation.number 36 -
dc.citation.startPage 15734 -
dc.citation.title ANGEWANDTE CHEMIE-INTERNATIONAL EDITION -
dc.citation.volume 59 -
dc.contributor.author Wang, Lifen -
dc.contributor.author Liu, Lei -
dc.contributor.author Chen, Ji -
dc.contributor.author Mohsin, Ali -
dc.contributor.author Yum, Jung Hwan -
dc.contributor.author Hudnall, Todd W. -
dc.contributor.author Bielawski, Christopher W. -
dc.contributor.author Rajh, Tijana -
dc.contributor.author Bai, Xuedong -
dc.contributor.author Gao, Shang-Peng -
dc.contributor.author Gu, Gong -
dc.date.accessioned 2023-12-21T17:07:51Z -
dc.date.available 2023-12-21T17:07:51Z -
dc.date.created 2020-07-23 -
dc.date.issued 2020-09 -
dc.description.abstract Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells. -
dc.identifier.bibliographicCitation ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.59, no.36, pp.15734 - 15740 -
dc.identifier.doi 10.1002/anie.202007244 -
dc.identifier.issn 1433-7851 -
dc.identifier.scopusid 2-s2.0-85087205818 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/49120 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202007244 -
dc.identifier.wosid 000545448300001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Synthesis of Honeycomb-Structured Beryllium Oxide via Graphene Liquid Cells -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor aqueous-solution synthesis -
dc.subject.keywordAuthor beryllium oxide -
dc.subject.keywordAuthor graphene liquid cells -
dc.subject.keywordAuthor high-resolution transmission electron microscopy -
dc.subject.keywordAuthor structural phase transition -
dc.subject.keywordAuthor thermodynamic ultra-thin limit -
dc.subject.keywordPlus EPITAXIAL-GROWTH -
dc.subject.keywordPlus INTERFACES -
dc.subject.keywordPlus LAYERS -
dc.subject.keywordPlus GAAS -
dc.subject.keywordPlus SI -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.