File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 410 -
dc.citation.number 7809 -
dc.citation.startPage 406 -
dc.citation.title NATURE -
dc.citation.volume 581 -
dc.contributor.author Wu, Muhong -
dc.contributor.author Zhang, Zhibin -
dc.contributor.author Xu, Xiaozhi -
dc.contributor.author Zhang, Zhihong -
dc.contributor.author Duan, Yunrui -
dc.contributor.author Dong, Jichen -
dc.contributor.author Qiao, Ruixi -
dc.contributor.author You, Sifan -
dc.contributor.author Wang, Li -
dc.contributor.author Qi, Jiajie -
dc.contributor.author Zou, Dingxin -
dc.contributor.author Shang, Nianze -
dc.contributor.author Yang, Yubo -
dc.contributor.author Li, Hui -
dc.contributor.author Zhu, Lan -
dc.contributor.author Sun, Junliang -
dc.contributor.author Yu, Haijun -
dc.contributor.author Gao, Peng -
dc.contributor.author Bai, Xuedong -
dc.contributor.author Jiang, Ying -
dc.contributor.author Wang, Zhu-Jun -
dc.contributor.author Ding, Feng -
dc.contributor.author Yu, Dapeng -
dc.contributor.author Wang, Enge -
dc.contributor.author Liu, Kaihui -
dc.date.accessioned 2023-12-21T17:37:23Z -
dc.date.available 2023-12-21T17:37:23Z -
dc.date.created 2020-11-09 -
dc.date.issued 2020-05 -
dc.description.abstract The production of large single-crystal metal foils with various facet indices has long been a pursuit in materials science owing to their potential applications in crystal epitaxy, catalysis, electronics and thermal engineering(1-5). For a given metal, there are only three sets of low-index facets ({100}, {110} and {111}). In comparison, high-index facets are in principle infinite and could afford richer surface structures and properties. However, the controlled preparation of single-crystal foils with high-index facets is challenging, because they are neither thermodynamically(6,7) nor kinetically(3) favourable compared to low-index facets(6-18). Here we report a seeded growth technique for building a library of single-crystal copper foils with sizes of about 30 x 20 square centimetres and more than 30 kinds of facet. A mild pre-oxidation of polycrystalline copper foils, followed by annealing in a reducing atmosphere, leads to the growth of high-index copper facets that cover almost the entire foil and have the potential of growing to lengths of several metres. The creation of oxide surface layers on our foils means that surface energy minimization is not a key determinant of facet selection for growth, as is usually the case. Instead, facet selection is dictated randomly by the facet of the largest grain (irrespective of its surface energy), which consumes smaller grains and eliminates grain boundaries. Our high-index foils can be used as seeds for the growth of other Cu foils along either the in-plane or the out-of-plane direction. We show that this technique is also applicable to the growth of high-index single-crystal nickel foils, and we explore the possibility of using our high-index copper foils as substrates for the epitaxial growth of two-dimensional materials. Other applications are expected in selective catalysis, low-impedance electrical conduction and heat dissipation. -
dc.identifier.bibliographicCitation NATURE, v.581, no.7809, pp.406 - 410 -
dc.identifier.doi 10.1038/s41586-020-2298-5 -
dc.identifier.issn 0028-0836 -
dc.identifier.scopusid 2-s2.0-85085486338 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/49038 -
dc.identifier.url https://www.nature.com/articles/s41586-020-2298-5 -
dc.identifier.wosid 000587368900001 -
dc.language 영어 -
dc.publisher NATURE RESEARCH -
dc.title Seeded growth of large single-crystal copper foils with high-index facets -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ABNORMAL GRAIN-GROWTH -
dc.subject.keywordPlus SURFACE-ENERGY -
dc.subject.keywordPlus CRYSTALLOGRAPHIC ORIENTATION -
dc.subject.keywordPlus STRAIN-ENERGY -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus TEXTURE -
dc.subject.keywordPlus CU -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.