File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조윤경

Cho, Yoon-Kyoung
FRUITS Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 287 -
dc.citation.number 1 -
dc.citation.startPage 279 -
dc.citation.title NANO LETTERS -
dc.citation.volume 21 -
dc.contributor.author Kumari, Nitee -
dc.contributor.author Kumar, Sumit -
dc.contributor.author Karmacharya, Mamata -
dc.contributor.author Dubbu, Sateesh -
dc.contributor.author Kwon, Taewan -
dc.contributor.author Singh, Varsha -
dc.contributor.author Chae, Keun Hwa -
dc.contributor.author Kumar, A -
dc.contributor.author Cho, Yoon-Kyoung -
dc.contributor.author Lee, In Su -
dc.date.accessioned 2023-12-21T16:36:42Z -
dc.date.available 2023-12-21T16:36:42Z -
dc.date.created 2020-12-16 -
dc.date.issued 2021-01 -
dc.description.abstract Next-generation catalysts are urgently needed to tackle the global challenge of antimicrobial resistance. Existing antimicrobials cannot function in the complex and stressful chemical conditions found in biofilms, and as a result, they are unable to infiltrate, diffuse into, and eradicate the biofilm and its associated matrix. Here, we introduce mixed-FeCo-oxide-based surface-textured nanostructures (MTex) as highly efficient magneto-catalytic platforms. These systems can produce defensive ROS over a broad pH range and can effectively diffuse into the biofilm and kill the embedded bacteria. Because the nanostructures are magnetic, biofilm debris can be scraped out of the microchannels. The key antifouling efficacy of MTex originates from the unique surface topography that resembles that of a ploughed field. These are captured as stable textured intermediates during the oxidative annealing and solid-state conversion of beta-FeOOH nanocrystals. These nanoscale surfaces will advance progress toward developing a broad array of new enzyme-like properties at the nanobio interface. -
dc.identifier.bibliographicCitation NANO LETTERS, v.21, no.1, pp.279 - 287 -
dc.identifier.doi 10.1021/acs.nanolett.0c03639 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-85098762604 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/49010 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03639 -
dc.identifier.wosid 000611082000039 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Surface-Textured Mixed-Metal-Oxide Nanocrystals as Efficient Catalysts for ROS Production and Biofilm Eradication -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory X-RAY-ABSORPTION; NANOPARTICLES; ENZYME; BACTERIA; THERAPY -
dc.relation.journalResearchArea Nanocatalyst; Metal oxide; ROS; Antimicrobial agent; Biofilm removal -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Chemistry -
dc.subject.keywordAuthor Science & Technology - Other Topics -
dc.subject.keywordAuthor Materials Science -
dc.subject.keywordAuthor Physics -
dc.subject.keywordPlus Chemistry, Multidisciplinary -
dc.subject.keywordPlus Chemistry, Physical -
dc.subject.keywordPlus Nanoscience & Nanotechnology -
dc.subject.keywordPlus Materials Science, Multidisciplinary -
dc.subject.keywordPlus Physics, Applied -
dc.subject.keywordPlus Physics, Condensed Matter -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.