File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신태주

Shin, Tae Joo
Synchrotron Radiation Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 23683 -
dc.citation.number 52 -
dc.citation.startPage 23678 -
dc.citation.title ANGEWANDTE CHEMIE-INTERNATIONAL EDITION -
dc.citation.volume 59 -
dc.contributor.author Li, Feng -
dc.contributor.author Han, Gao-Feng -
dc.contributor.author Bu, Yunfei -
dc.contributor.author Noh, Hyuk-Jun -
dc.contributor.author Jeon, Jong-Pil -
dc.contributor.author Shin, Tae Joo -
dc.contributor.author Kim, Seok-Jin -
dc.contributor.author Wu, Yuen -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Fu, Zhengping -
dc.contributor.author Lu, Yalin -
dc.contributor.author Baek, Jong-Beom -
dc.date.accessioned 2023-12-21T16:39:49Z -
dc.date.available 2023-12-21T16:39:49Z -
dc.date.created 2020-11-06 -
dc.date.issued 2020-12 -
dc.description.abstract Single atom catalysts (SACs) are of great importance for oxygen reduction, a critical process in renewable energy technologies. The catalytic performance of SACs largely depends on the structure of their active sites, but explorations of highly active structures for SAC active sites are still limited. Herein, we demonstrate a combined experimental and theoretical study of oxygen reduction catalysis on SACs, which incorporate M-N(3)C(1)site structure, composed of atomically dispersed transition metals (e.g., Fe, Co, and Cu) in nitrogenated carbon nanosheets. The resulting SACs with M-N(3)C(1)sites exhibited prominent oxygen reduction catalytic activities in both acidic and alkaline media, following the trend Fe-N3C1> Co-N3C1> Cu-N3C1. Theoretical calculations suggest the C atoms in these structures behave as collaborative adsorption sites to M atoms, thanks to interactions between thed/porbitals of the M/C atoms in the M-N(3)C(1)sites, enabling dual site oxygen reduction. -
dc.identifier.bibliographicCitation ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.59, no.52, pp.23678 - 23683 -
dc.identifier.doi 10.1002/anie.202008325 -
dc.identifier.issn 1433-7851 -
dc.identifier.scopusid 2-s2.0-85093532919 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48741 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202008325 -
dc.identifier.wosid 000581047000001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Revealing Isolated M-N(3)C(1)Active Sites for Efficient Collaborative Oxygen Reduction Catalysis -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor active sites -
dc.subject.keywordAuthor collaborative catalysis -
dc.subject.keywordAuthor oxygen reduction reaction -
dc.subject.keywordAuthor single atom catalyst -
dc.subject.keywordPlus ACTIVE-SITES -
dc.subject.keywordPlus MESOPOROUS CARBON -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus GRAPHENE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.