File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 36 -
dc.citation.title ADVANCED FUNCTIONAL MATERIALS -
dc.citation.volume 30 -
dc.contributor.author Buyukcakir, Onur -
dc.contributor.author Ryu, Jaegeon -
dc.contributor.author Joo, Se Hun -
dc.contributor.author Kang, Jieun -
dc.contributor.author Yuksel, Recep -
dc.contributor.author Lee, Jiyun -
dc.contributor.author Jiang, Yi -
dc.contributor.author Choi, Sungho -
dc.contributor.author Lee, Sun Hwa -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Park, Soojin -
dc.contributor.author Ruoff, Rodney S. -
dc.date.accessioned 2023-12-21T17:07:14Z -
dc.date.available 2023-12-21T17:07:14Z -
dc.date.created 2020-10-07 -
dc.date.issued 2020-09 -
dc.description.abstract The synthesis of a new type of redox-active covalent triazine framework (rCTF) material, which is promising as an anode for Li-ion batteries, is reported. After activation, it has a capacity up to approximate to 1190 mAh g(-1)at 0.5C with a current density of 300 mA g(-1)and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half-cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g(-1)and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g(-1). By electrochemical analysis and theoretical calculations, it is found that its lithium-storage mechanism involves multi-electron redox-reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast-charging Li-ion half and full cells even at a high capacity loading. -
dc.identifier.bibliographicCitation ADVANCED FUNCTIONAL MATERIALS, v.30, no.36 -
dc.identifier.doi 10.1002/adfm.202003761 -
dc.identifier.issn 1616-301X -
dc.identifier.scopusid 2-s2.0-85087767928 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48595 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003761 -
dc.identifier.wosid 000569877100021 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor covalent triazine frameworks -
dc.subject.keywordAuthor energy storage -
dc.subject.keywordAuthor Li-ion batteries -
dc.subject.keywordAuthor lithium accommodation -
dc.subject.keywordAuthor organic anodes -
dc.subject.keywordPlus CONJUGATED MICROPOROUS POLYMERS -
dc.subject.keywordPlus ORGANIC ELECTRODE MATERIALS -
dc.subject.keywordPlus CATHODE MATERIALS -
dc.subject.keywordPlus FACILE SYNTHESIS -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus OPPORTUNITIES -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus CHALLENGES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.