BROWSE

Related Researcher

Author's Photo

Ruoff, Rodney S.
Center for Multidimensional Carbon Materials (CMCM)
Research Interests
  • Next generation carbons, ultrathin sp3-bonded carbon sheets, negative curvature (‘Schwartzites’) carbons, sp3/sp2 hybrid carbon materials, model compounds for novel carbon materials, reaction mechanisms

ITEM VIEW & DOWNLOAD

Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries
Author
Buyukcakir, OnurRyu, JaegeonJoo, Se HunKang, JieunYuksel, RecepLee, JiyunJiang, YiChoi, SunghoLee, Sun HwaKwak, Sang KyuPark, SoojinRuoff, Rodney S.
Issue Date
2020-09
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED FUNCTIONAL MATERIALS, v.30, no.36
Abstract
The synthesis of a new type of redox-active covalent triazine framework (rCTF) material, which is promising as an anode for Li-ion batteries, is reported. After activation, it has a capacity up to approximate to 1190 mAh g(-1)at 0.5C with a current density of 300 mA g(-1)and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half-cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g(-1)and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g(-1). By electrochemical analysis and theoretical calculations, it is found that its lithium-storage mechanism involves multi-electron redox-reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast-charging Li-ion half and full cells even at a high capacity loading.
URI
https://scholarworks.unist.ac.kr/handle/201301/48595
URL
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003761
DOI
10.1002/adfm.202003761
ISSN
1616-301X
Appears in Collections:
CHM_Journal Papers
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU