File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정임두

Jung, Im Doo
Intelligent Manufacturing and Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 448 -
dc.citation.startPage 442 -
dc.citation.title INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS -
dc.citation.volume 41 -
dc.contributor.author Kim, Youngmoo -
dc.contributor.author Lee, Seong -
dc.contributor.author Noh, Joon-Woong -
dc.contributor.author Lee, Sung Ho -
dc.contributor.author Jung, Im Doo -
dc.contributor.author Park, Sung-Jin -
dc.date.accessioned 2023-12-22T03:12:30Z -
dc.date.available 2023-12-22T03:12:30Z -
dc.date.created 2020-09-22 -
dc.date.issued 2013-11 -
dc.description.abstract Rheological and sintering behaviors of nanostructured molybdenum powder were investigated and compared to those of commercial molybdenum powder for powder injection molding. Prior to the fabrication of feedstock, the critical solids-loading ratio of the powders and binders was measured by a torque rheometer. The mixture ratios were 46% and 50% for nanostructured and commercial molybdenum powders, respectively. The viscosities of the feedstock decreased with increasing shear rate and temperature regardless of the particle size. The Cross-WLF model was used to predict the rheological behavior of the mixtures. The sintered density and grain size of both powders were evaluated over a temperature range of 1100 to 1500 C and a time range of 0 to 480 min at 1500 C. At a sintering temperature of 1500 C and a holding time of 0 min, the relative density of the nanoscale powder (95%) was higher than that of the commercial powder (88%), and near full density was reached at a hold time of 480 min. These results indicate that the sinterability of molybdenum powder can be enhanced by reducing the particle size, which results in more effective consolidation compared with other sintering techniques. -
dc.identifier.bibliographicCitation INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, v.41, pp.442 - 448 -
dc.identifier.doi 10.1016/j.ijrmhm.2013.06.001 -
dc.identifier.issn 0263-4368 -
dc.identifier.scopusid 2-s2.0-84884351926 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48380 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0263436813001339 -
dc.identifier.wosid 000325840700065 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Rheological and sintering behaviors of nanostructured molybdenum powder -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Consolidation -
dc.subject.keywordAuthor Molybdenum powder -
dc.subject.keywordAuthor Rheology -
dc.subject.keywordPlus Commercial powders -
dc.subject.keywordPlus Molybdenum powder -
dc.subject.keywordPlus Nanoscale powder -
dc.subject.keywordPlus Powder injection molding -
dc.subject.keywordPlus Rheological behaviors -
dc.subject.keywordPlus Sintering behaviors -
dc.subject.keywordPlus Sintering temperatures -
dc.subject.keywordPlus Temperature range -
dc.subject.keywordPlus Consolidation -
dc.subject.keywordPlus Feedstocks -
dc.subject.keywordPlus Grain size and shape -
dc.subject.keywordPlus Mixtures -
dc.subject.keywordPlus Particle size -
dc.subject.keywordPlus Polymer blends -
dc.subject.keywordPlus Powder metallurgy -
dc.subject.keywordPlus Powders -
dc.subject.keywordPlus Rheology -
dc.subject.keywordPlus Sintering -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.