File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정임두

Jung, Im Doo
Intelligent Manufacturing and Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 664 -
dc.citation.startPage 659 -
dc.citation.title NANO ENERGY -
dc.citation.volume 50 -
dc.contributor.author Yin, Xuesong -
dc.contributor.author Tang, Wei -
dc.contributor.author Jung, Im Doo -
dc.contributor.author Phua, Kia Chai -
dc.contributor.author Adams, Stefan -
dc.contributor.author Lee, Seok Woo -
dc.contributor.author Zheng, Guangyuan Wesley -
dc.date.accessioned 2023-12-21T20:16:43Z -
dc.date.available 2023-12-21T20:16:43Z -
dc.date.created 2020-09-22 -
dc.date.issued 2018-08 -
dc.description.abstract Dendritic Li formation is one of the critical reasons for the failure of Li batteries. In order to improve the lithium metal anode performance, a better understanding of the growth mechanisms of Li dendrites is necessary. Due to the malleable nature of lithium metal, mechanical pressure should play an important role in determining the morphology and cycling behaviour of Li anode. Here we investigated the effect of an applied external pressure on the electrochemical deposition of lithium metal. Instead of a highly porous, wire-like Li growth in the absence of pressure, a much more compact Li deposition can be achieved when a pressure is applied to the batteries in the charge/discharge processes. The improved Li deposition/stripping behaviour in the pressed cells yields a 5% higher Coulombic efficiency (~90%) and more than 5-fold longer cycling life than the cells without pressure at a current density of 2 mA/cm2. The use of pressure in shaping Li metal is an effective approach to address the Li metal problem and advance Li technologies in the future. © 2018 -
dc.identifier.bibliographicCitation NANO ENERGY, v.50, pp.659 - 664 -
dc.identifier.doi 10.1016/j.nanoen.2018.06.003 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-85048319465 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48365 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2211285518303987?via%3Dihub -
dc.identifier.wosid 000438076200076 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Dendrite -
dc.subject.keywordAuthor Energy storage -
dc.subject.keywordAuthor Lithium battery -
dc.subject.keywordAuthor Lithium metal -
dc.subject.keywordAuthor Mechanical pressure -
dc.subject.keywordPlus Morphological evolution -
dc.subject.keywordPlus Lithium batteries -
dc.subject.keywordPlus Anodes -
dc.subject.keywordPlus Dendrites (metallography) -
dc.subject.keywordPlus Electrochemical deposition -
dc.subject.keywordPlus Energy storage -
dc.subject.keywordPlus Metals -
dc.subject.keywordPlus Reduction -
dc.subject.keywordPlus Secondary batteries -
dc.subject.keywordPlus Coulombic efficiency -
dc.subject.keywordPlus Effective approaches -
dc.subject.keywordPlus External pressures -
dc.subject.keywordPlus Growth mechanisms -
dc.subject.keywordPlus Lithium metal anode -
dc.subject.keywordPlus Lithium metals -
dc.subject.keywordPlus Mechanical pressure -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.