File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김진영

Kim, Jin Young
Next Generation Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.title NANO ENERGY -
dc.citation.volume 76 -
dc.contributor.author Park, Juhyung -
dc.contributor.author Yoon, Ki-Yong -
dc.contributor.author Kim, Taehyo -
dc.contributor.author Jang, Hyungsu -
dc.contributor.author Kwak, Myung-Jun -
dc.contributor.author Kim, Jin Young -
dc.contributor.author Jang, Ji-Hyun -
dc.date.accessioned 2023-12-21T17:19:01Z -
dc.date.available 2023-12-21T17:19:01Z -
dc.date.created 2020-09-17 -
dc.date.issued 2020-06 -
dc.description.abstract A tandem system consisting of a combined hematite photoanode/perovskite solar cell is a novel configuration enabling unbiased solar-driven water splitting in a cost-efficient way. However, similar light absorption spectrums between hematite and perovskite, causing significant optical loss of the solar cell located behind the photoelectrochemical cell, have been a critical issue, resulting in a substantial reduction in the overall photoelectrochemical performance in the bias-free tandem system. Herein, we report an efficient thin film hematite/perovskite tandem cell optimized with consideration of both quantum efficiency of the hematite photoanode and optical loss of the solar cell. Ti,Si co-doping with controlled dopability and deposition of transparent NiFeOx co-catalyst on hematite (NiFeOx@Ti:Si–Fe2O3(t)) allowed for highly improved surface reaction kinetics and charge transport behaviors, endowing our thin film with state-of-the-art performance among thin film hematite photoanodes reported to date, with a photocurrent density of 2.62mAcm−2 at 1.23VRHE and an onset potential of 0.71V. The perovskite solar cell in the thin hematite/solar cell exhibited an anodic shift of Voc from 1.08V to 1.16V and a three-fold increased photocurrent density (15.5mAcm−2) compared to the solar cell of the conventional thick hematite/solar cell system. The assembled dual photoanodes (dual NiFeOx@Ti:Si–Fe2O3) reached a maximum photocurrent density of 4.0mAcm−2 at 1.23VRHE. Our tandem photoelectrochemical system comprising assembled dual thin film NiFeOx@Ti:Si–Fe2O3/solar cell showed outstanding performance of an unbiased solar-to-hydrogen (STH) conversion efficiency of 4.49%, which is the highest recorded value in the hematite/perovskite tandem cell systems. This work provides a great potential for further development of an unassisted solar water splitting system with the thin film hematite. © 2020 -
dc.identifier.bibliographicCitation NANO ENERGY, v.76 -
dc.identifier.doi 10.1016/j.nanoen.2020.105089 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-85088131282 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48350 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2211285520306662?via%3Dihub -
dc.identifier.wosid 000571079800004 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title A highly transparent thin film hematite with multi-element dopability for an efficient unassisted water splitting system -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Controlled dopability -
dc.subject.keywordAuthor Optical loss -
dc.subject.keywordAuthor Perovskite -
dc.subject.keywordAuthor Tandem system -
dc.subject.keywordAuthor Thin film hematite -
dc.subject.keywordAuthor Unbiased solar-driven water splitting -
dc.subject.keywordPlus Photoelectrochemical performance -
dc.subject.keywordPlus Photoelectrochemical system -
dc.subject.keywordPlus Solar water splitting -
dc.subject.keywordPlus Solar-to-hydrogen conversions -
dc.subject.keywordPlus State-of-the-art performance -
dc.subject.keywordPlus Substantial reduction -
dc.subject.keywordPlus Transparent thin film -
dc.subject.keywordPlus Water splitting system -
dc.subject.keywordPlus Thin films -
dc.subject.keywordPlus Absorption spectroscopy -
dc.subject.keywordPlus Deposition -
dc.subject.keywordPlus Efficiency -
dc.subject.keywordPlus Hematite -
dc.subject.keywordPlus Light absorption -
dc.subject.keywordPlus Nickel compounds -
dc.subject.keywordPlus Perovskite -
dc.subject.keywordPlus Perovskite solar cells -
dc.subject.keywordPlus Photocurrents -
dc.subject.keywordPlus Photoelectrochemical cells -
dc.subject.keywordPlus Reaction kinetics -
dc.subject.keywordPlus Semiconductor doping -
dc.subject.keywordPlus Silicon -
dc.subject.keywordPlus Silicon compounds -
dc.subject.keywordPlus Solar power generation -
dc.subject.keywordPlus Surface reactions -
dc.subject.keywordPlus Thin film solar cells -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.