Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model
Cited 0 times in
Cited 0 times in
- Title
- Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model
- Author
- Choi, Kyudong; Kang, Moon-Jin; Vasseur, Alexis F.
- Issue Date
- 2020-10
- Publisher
- ELSEVIER
- Citation
- JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, v.142, pp.266 - 297
- Abstract
- We consider a one-dimensional system arising from a chemotaxis model in tumour angiogenesis, which is described by a Keller-Segel equation with singular sensitivity. This hyperbolic-parabolic system is known to allow viscous shocks (so-called traveling waves), and in literature, their nonlinear stability has been considered in the class of certain mean-zero small perturbations. We show the global existence of solution without assuming the mean-zero condition for any initial data as arbitrarily large perturbations around traveling waves in the Sobolev space H-1 while the shock strength is assumed to be small enough. The main novelty of this paper is to develop the global well-posedness of any large H-1-perturbations of traveling waves connecting two different end states. The discrepancy of the end states is linked to the complexity of the corresponding flux, which requires a new type of an energy estimate. To overcome this issue, we use the a priori contraction estimate of a weighted relative entropy functional up to a translation, which was proved by Choi-Kang-Kwon-Vasseur [1]. The boundedness of the shift implies a priori bound of the relative entropy functional without the shift on any time interval of existence, which produces a H-1-estimate thanks to a De Giorgi type lemma. Moreover, to remove possibility of vacuum appearance, we use the lemma again. (C) 2020 Elsevier Masson SAS. All rights reserved.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/48283
- URL
- https://www.sciencedirect.com/science/article/pii/S0021782420300568
- DOI
- 10.1016/j.matpur.2020.03.002
- ISSN
- 0021-7824
- Appears in Collections:
- MTH_Journal Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.