File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

안광진

An, Kwangjin
Advanced Nanocatalysis Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 8671 -
dc.citation.number 15 -
dc.citation.startPage 8660 -
dc.citation.title ACS CATALYSIS -
dc.citation.volume 10 -
dc.contributor.author Kim, Kwang Young -
dc.contributor.author Lee, Hojeong -
dc.contributor.author Noh, Woo Yeong -
dc.contributor.author Shin, Jungho -
dc.contributor.author Han, Seung Ju -
dc.contributor.author Kim, Seok Ki -
dc.contributor.author An, Kwangjin -
dc.contributor.author Lee, Jae Sung -
dc.date.accessioned 2023-12-21T17:09:29Z -
dc.date.available 2023-12-21T17:09:29Z -
dc.date.created 2020-09-11 -
dc.date.issued 2020-08 -
dc.description.abstract Monodisperse nanoparticles (NPs) of CoFe2O4 were synthesized as efficient catalyst precursors for CO2 hydrogenation to produce high value-added C-2-C-4 olefin products, which are important building blocks for the chemical industry. The resulting Na-promoted CoFe2O4 catalysts supported on carbon nanotubes (Na-CoFe2O4/CNT) exhibited high CO2 conversion (similar to 34%) and light olefin selectivity (similar to 39%), outperforming other reported Fe-based catalysts under similar reaction conditions. Their performance was superior to that of single-metal NP catalysts (Na-Fe3O4/CNT and Na-Co/CNT) and a physically mixed (Na-Fe3O(4) + Co)/CNT catalyst. The superior performance of the Na-CoFe2O4/CNT catalyst can be attributed to the facile formation of a unique bimetallic alloy carbide (Fe1-xCox)(5)C-2, which results in higher CO2 conversion and better selectivity toward light olefins in comparison with conventional chi-Fe5C2 active sites derived from Fe-only catalysts and significantly improved heavy hydrocarbon (C2+) formation in comparison with the Co2C sites of Co-only catalysts. The single-source precursor CoFe2O4 exclusively forms a single-phase alloy carbide promoted by the Na promoter, whereas the mixed (Na-Fe3O4 + Co) precursor forms an isolated Co phase with the alloy carbide phase, promoting undesirable CH4 formation. An optimal value of x <= 0.2 for (Fe1-xCox)(5)C-2 was predicted using the cluster expansion method and density functional theory, resulting in a stable bimetallic alloy structure. -
dc.identifier.bibliographicCitation ACS CATALYSIS, v.10, no.15, pp.8660 - 8671 -
dc.identifier.doi 10.1021/acscatal.0c01417 -
dc.identifier.issn 2155-5435 -
dc.identifier.scopusid 2-s2.0-85089664418 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/48221 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acscatal.0c01417 -
dc.identifier.wosid 000562075000060 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Cobalt Ferrite Nanoparticles to Form a Catalytic Co-Fe Alloy Carbide Phase for Selective CO2 Hydrogenation to Light Olefins -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor spinet cobalt ferrite -
dc.subject.keywordAuthor monodisperse nanoparticles -
dc.subject.keywordAuthor CO2 hydrogenation catalyst -
dc.subject.keywordAuthor bimetallic alloy carbide -
dc.subject.keywordAuthor light olefins -
dc.subject.keywordPlus FISCHER-TROPSCH SYNTHESIS -
dc.subject.keywordPlus DENSITY-FUNCTIONAL THEORY -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus FE5C2 NANOPARTICLES -
dc.subject.keywordPlus SYNTHESIS GAS -
dc.subject.keywordPlus ACTIVE PHASE -
dc.subject.keywordPlus IRON CARBIDE -
dc.subject.keywordPlus CONVERSION -
dc.subject.keywordPlus CAPTURE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.