BROWSE

ITEM VIEW & DOWNLOAD

Engineering of hybrid materials for self-powered flexible sensors

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Engineering of hybrid materials for self-powered flexible sensors
Author
Shin, Young-Eun
Advisor
Ko, Hyunhyub
Issue Date
2020-08
Publisher
Graduate School of UNIST
Abstract
Along with the 4th industrial revolution, the great advance in wearable electronics has led a new paradigm in our life. Especially, wearable sensor technology has received great attention as promising candidates to improve the quality of life by realizing the “Internet of Things” which can be utilized in daily healthcare, intelligent control, daily activity monitoring, and human-machine interface systems. The ideal wearable devices require several characteristics providing light weight, flexible, unobtrusive, autonomously powered for the convenience of user and sustainable uses. Although various emerging technologies have been suggested to meet these requirements, there are still challenges for highly flexible and unobtrusive forms, multifunctionality, and sustainable uses, which are directly related to widespread practical applications. In response to these requirements, several approaches to explore functional materials and to design the effective structures for advanced sensor performances with sustainable uses, high sensitivity, and multifunctionality. For sustainable uses, self-powered sensing system can be developed by triboelectric/piezoelectric/pyroelectric effect, which can rule out any problems with power sources. For wearable and flexible form factors, textile and extremely thin films, which are mountable and attachable on the human body, are used instead of conventional obtrusive devices, improving the wearing sensing of devices. Moreover, the selection of multifunctional materials and modification of material characteristics can realize multifunctionality which can respond to different stimuli (pressure and temperature) simultaneously. Furthermore, soft/hard and organic/inorganic hybrid materials can be used for effective design of high performance wearable sensor by distribution control in dissimilar materials, which is attributed to effectively localized strain and large contrast of dielectric properties. Therefore, self-powered wearable sensors can be developed with functional materials, unique design and novel approach for characteristic modification, which can provide a promising platform to realize ideal wearable sensors for future applications such as daily healthcare, intelligent control, daily activity monitoring, and human-machine interface systems. In this thesis, we suggest the strategy for advanced sustainable wearable sensors with better wearing sensation, multimodality, and enhanced sensory functions through structure design and modification of material characteristics. Firstly, we briefly summarize the fundamental working principles, the latest research trends, and potential applications in Chapter 1. In Chapter 2, we demonstrate as-spun P(VDF) fiber-based self-powered textile sensors with high sensitivity, mechanical stability, and washing durability. In Chapter 3, we introduce multimodal wearable sensors without signal interference based on triboelectric and pyroelectric effect, which is attributed to controllable polarity of P(VDF-TrFE) via ferroelectric polarization. In Chapter 4, we suggest a novel method for high performance of triboelectric sensors based on alternating P(VDF-TrFE)/BaTiO3 multilayer nanocomposites, which is attributed to the efficient stress concentration and large contrast of dielectric properties. Lastly, we summarize this thesis with future prospects in Chapter 5.
Description
Department of Energy Engineering (Energy Engineering)
URI
Go to Link
Appears in Collections:
ECHE_Theses_Ph.D.
Files in This Item:
Engineering of hybrid materials for self-powered flexible sensors.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU