Bacterial Recognition of Silicon Nanowire Arrays
Cited 8 times in
Cited 5 times in
- Title
- Bacterial Recognition of Silicon Nanowire Arrays
- Author
- Jeong, Hoon Eui; Kim, Ilsoo; Karam, Pierre; Choi, Heon-Jin; Yang, Peidong
- Keywords
- Fundamental principles; Nanoscale topography; Physicochemical property; Preferential attachments; Shewanella oneidensis MR-1; Silicon nanowire arrays; Single cells; Trajectory analysis
- Issue Date
- 2013-06
- Publisher
- AMER CHEMICAL SOC
- Citation
- NANO LETTERS, v.13, no.6, pp.2864 - 2869
- Abstract
- Understanding how living cells interact with nanostructures is integral to a better understanding of the fundamental principles of biology and the development of next-generation biomedical/bioenergy devices. Recent studies have demonstrated that mammalian cells can recognize nanoscale topographies and respond to these structures. From this perspective, there is a growing recognition that nanostructures, along with their specific physicochemical properties, can also be used to regulate the responses and motions of bacterial cells. Here, by utilizing a well-defined silicon nanowire array platform and single-cell imaging, we present direct evidence that Shewanella oneidensis MR-1 can recognize nanoscale structures and that their swimming patterns and initial attachment locations are strongly influenced by the presence of nanowires on a surface. Analyses of bacterial trajectories revealed that MR-1 cells exhibited a confined diffusion mode in the presence of nanowires and showed preferential attachment to the nanowires, whereas a superdiffusion mode was observed in the absence of nanowires. These results demonstrate that nanoscale topography can affect bacterial movement and attachment and play an important role during the early stages of biofilm formation.
- URI
- ; Go to Link
- DOI
- 10.1021/nl401205b
- ISSN
- 1530-6984
- Appears in Collections:
- MEN_Journal Papers
- Files in This Item:
-
000320485100090.pdf
Download
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.