BROWSE

Related Researcher

Author's Photo

Kim, Guntae
gunslab
Research Interests
  • Solid Oxide Fuel Cells (SOFCs)& SOE, PEMFC, metal-air batteries, Metal-CO2 system, Catalyst for DRM

ITEM VIEW & DOWNLOAD

Phase Engineering of Transition Metal Dichalcogenides with Unprecedentedly High Phase Purity, Stability, and Scalability via Molten-Metal-Assisted Intercalation

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Phase Engineering of Transition Metal Dichalcogenides with Unprecedentedly High Phase Purity, Stability, and Scalability via Molten-Metal-Assisted Intercalation
Author
Park, SanghyeonKim, ChangminPark, Sung O.Oh, Nam KhenKim, UngsooLee, JunghyunSeo, JihyungYang, YejinLim, Hyeong YongKwak, Sang KyuKim, GuntaePark, Hyesung
Issue Date
2020-07
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED MATERIALS, pp.2001889
Abstract
The crystalline phase of layered transition metal dichalcogenides (TMDs) directly determines their material property. The most thermodynamically stable phase structures in TMDs are the semiconducting 2H and metastable metallic 1T phases. To overcome the low phase purity and instability of 1T-TMDs, which limits the utilization of their intrinsic properties, various synthesis strategies for 1T-TMDs have been proposed in phase-engineering studies. Herein, a facile and scalable synthesis of 1T-phase molybdenum disulfide (MoS2) via the molten-metal-assisted intercalation (MMI) approach is introduced, which exploits the capillary action of molten potassium and the difference between the electron affinity of MoS(2)and the ionization potential of potassium. Highly reactive molten potassium metal can readily intercalate into the MoS(2)interlayers, inducing an efficient phase transition from the 2H to 1T crystal structure. The ionic bonding between the intercalated potassium and sulfur lowers the energy barrier of the 1T-phase transition, enhancing the phase stability of the 1T crystals. Owing to the high purity and stability of the 1T phase, the electrocatalytic performance for the hydrogen evolution reaction is significantly higher in 1T-MoS2(MMI) than in 2H-MoS(2)and even in 1T-MoS(2)synthesized using n-butyllithium.
URI
https://scholarworks.unist.ac.kr/handle/201301/36813
URL
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202001889
DOI
10.1002/adma.202001889
ISSN
0935-9648
Appears in Collections:
MSE_Journal Papers
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU