File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

GrzybowskiBartosz Andrzej

Grzybowski, Bartosz A.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 3 -
dc.citation.startPage 037102 -
dc.citation.title CHAOS -
dc.citation.volume 16 -
dc.contributor.author Bishop, K. J. M. -
dc.contributor.author Gray, T. P. -
dc.contributor.author Fialkowski, M. -
dc.contributor.author Grzybowski, B. A. -
dc.date.accessioned 2023-12-22T09:42:12Z -
dc.date.available 2023-12-22T09:42:12Z -
dc.date.created 2020-07-14 -
dc.date.issued 2006-09 -
dc.description.abstract In biological systems, the coupling of nonlinear biochemical kinetics and molecular transport enables functional sensing and "signal" amplification across many length scales. Drawing on biological inspiration, we describe how artificial reaction-diffusion (RD) microsystems can provide a basis for sensing applications, capable of amplifying micro- and nanoscopic events into macroscopic visual readouts. The RD applications reviewed here are based on a novel experimental technique, WETS for Wet Stamping, which offers unprecedented control over RD processes in microscopic and complex geometries. It is discussed how RD can be used to sense subtle differences in the thickness and/or absorptivity of thin absorptive films, amplify macromolecular phase transitions, detect the presence and quality of self-assembled monolayers, and provide dynamic spatiotemporal readouts of chemical "metabolites." (c) 2006 American Institute of Physics. -
dc.identifier.bibliographicCitation CHAOS, v.16, no.3, pp.037102 -
dc.identifier.doi 10.1063/1.2240142 -
dc.identifier.issn 1054-1500 -
dc.identifier.scopusid 2-s2.0-33749358929 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/33373 -
dc.identifier.url https://aip.scitation.org/doi/full/10.1063/1.2240142 -
dc.identifier.wosid 000240876100031 -
dc.language 영어 -
dc.publisher AMER INST PHYSICS -
dc.title Microchameleons: Nonlinear chemical microsystems for amplification and sensing -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Mathematics, Applied; Physics, Mathematical -
dc.relation.journalResearchArea Mathematics; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus SELF-ASSEMBLED MONOLAYERS -
dc.subject.keywordPlus PERIODIC PRECIPITATION PATTERNS -
dc.subject.keywordPlus ORGANIZED MOLECULAR ASSEMBLIES -
dc.subject.keywordPlus PHYSIOLOGICAL COLOR-CHANGE -
dc.subject.keywordPlus REACTION-DIFFUSION -
dc.subject.keywordPlus LIESEGANG PATTERNS -
dc.subject.keywordPlus GOLD SURFACES -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus CONCENTRATION GRADIENTS -
dc.subject.keywordPlus LOLLIGUNCULA-BREVIS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.