File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

GrzybowskiBartosz Andrzej

Grzybowski, Bartosz A.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1344 -
dc.citation.number 4 -
dc.citation.startPage 1316 -
dc.citation.title NANOSCALE -
dc.citation.volume 3 -
dc.contributor.author Walker, David A. -
dc.contributor.author Kowalczyk, Bartlomiej -
dc.contributor.author de la Cruz, Monica Olvera -
dc.contributor.author Grzybowski, Bartosz A. -
dc.date.accessioned 2023-12-22T06:37:42Z -
dc.date.available 2023-12-22T06:37:42Z -
dc.date.created 2020-07-14 -
dc.date.issued 2011 -
dc.description.abstract Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long-or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated. -
dc.identifier.bibliographicCitation NANOSCALE, v.3, no.4, pp.1316 - 1344 -
dc.identifier.doi 10.1039/c0nr00698j -
dc.identifier.issn 2040-3364 -
dc.identifier.scopusid 2-s2.0-79953741988 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/33208 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2011/NR/C0NR00698J#!divAbstract -
dc.identifier.wosid 000289306900002 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Electrostatics at the nanoscale -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Review -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus SELF-ASSEMBLED MONOLAYERS -
dc.subject.keywordPlus SURFACE-ENHANCED RAMAN -
dc.subject.keywordPlus MORPHOLOGY-DEPENDENT ELECTROCHEMISTRY -
dc.subject.keywordPlus SPHERICAL COLLOIDAL PARTICLES -
dc.subject.keywordPlus SHAPE-CONTROLLED SYNTHESIS -
dc.subject.keywordPlus COATED GOLD NANOPARTICLES -
dc.subject.keywordPlus METAL NANOPARTICLES -
dc.subject.keywordPlus OPTICAL-PROPERTIES -
dc.subject.keywordPlus OXIDE NANOPARTICLES -
dc.subject.keywordPlus SUPRAMOLECULAR CHEMISTRY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.