File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박영빈

Park, Young-Bin
Functional Intelligent Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 108010 -
dc.citation.title COMPOSITES PART B-ENGINEERING -
dc.citation.volume 193 -
dc.contributor.author Cho, Beom-Gon -
dc.contributor.author Joshi, Shalik Ram -
dc.contributor.author Lee, Jaekyo -
dc.contributor.author Park, Young-Bin -
dc.contributor.author Kim, Gun-Ho -
dc.date.accessioned 2023-12-21T17:16:38Z -
dc.date.available 2023-12-21T17:16:38Z -
dc.date.created 2020-05-29 -
dc.date.issued 2020-07 -
dc.description.abstract In this study, carbon fiber (CF) composites were prepared by synthesizing thermally reduced graphene oxide (TRGO) directly on the surface of CFs in order to reinforce the interface between the CFs and the matrix. The conformal and robust coating of TRGO on the CF surface is achieved by the direct conversion of shellac, a lowcost natural polymer, to TRGO via single-step low-temperature (400-700 degrees C) annealing. X-ray photoelectron spectroscopy, Raman analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, contact angle measurement, and energy dispersive spectrometry results confirmed the synthesis of high-quality TRGO, which prompted hydrogen bonding and mechanical interlocking at the composite interfaces. The CF-TRGO composites showed 60 and 152% higher interlaminar shear strength (ILSS) and flexural strength, respectively than the untreated CF composites. The fracture surface analysis by SEM further reveals that the interfacial bonding between the matrix and the CFs increased significantly with TRGO coating. -
dc.identifier.bibliographicCitation COMPOSITES PART B-ENGINEERING, v.193, pp.108010 -
dc.identifier.doi 10.1016/j.compositesb.2020.108010 -
dc.identifier.issn 1359-8368 -
dc.identifier.scopusid 2-s2.0-85083028946 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/32315 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S1359836819340132?via%3Dihub -
dc.identifier.wosid 000531097400008 -
dc.language 영어 -
dc.publisher ELSEVIER SCI LTD -
dc.title Direct growth of thermally reduced graphene oxide on carbon fiber for enhanced mechanical strength -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Engineering, Multidisciplinary; Materials Science, Composites -
dc.relation.journalResearchArea Engineering; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Thermally reduced graphene oxide (TRGO) -
dc.subject.keywordAuthor Shellac -
dc.subject.keywordAuthor Plasma surface treatments -
dc.subject.keywordAuthor Mechanical properties -
dc.subject.keywordAuthor Carbon fibers -
dc.subject.keywordPlus ELECTROCHEMICAL OXIDATION -
dc.subject.keywordPlus SURFACE-TREATMENT -
dc.subject.keywordPlus COMPOSITES -
dc.subject.keywordPlus EPOXY -
dc.subject.keywordPlus OXYGEN -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus MORPHOLOGY -
dc.subject.keywordPlus FACILE -
dc.subject.keywordPlus LAYER -
dc.subject.keywordPlus XPS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.