File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이상영

Lee, Sang-Young
Energy Soft-Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 727 -
dc.citation.number 3 -
dc.citation.startPage 718 -
dc.citation.title ACS ENERGY LETTERS -
dc.citation.volume 5 -
dc.contributor.author Kim, Dong Hyeon -
dc.contributor.author Lee, Yong-Hyeok -
dc.contributor.author Song, Yong Bae -
dc.contributor.author Kwak, Hiram -
dc.contributor.author Lee, Sang-Young -
dc.contributor.author Jung, Yoon Seok -
dc.date.accessioned 2023-12-21T17:47:09Z -
dc.date.available 2023-12-21T17:47:09Z -
dc.date.created 2020-05-06 -
dc.date.issued 2020-03 -
dc.description.abstract Sheet-type solid electrolyte (SE) membranes are essential for practical all-solid-state Li batteries (ASLBs). To date, SE membrane development has mostly been based on polymer electrolytes with or without the aid of liquid electrolytes, which offset thermal stability (or safety). In this study, a new scalable fabrication protocol for thin (40-70 mu m) and flexible single-ion conducting sulfide SE membranes with high conductance (29 mS) and excellent thermal stability (up to similar to 400 degrees C) is reported. Electrospun polyimide (PI) nonwovens provide a favorable porous structure and ultrahigh thermal stability, thus accommodating highly conductive infiltrating solution-processable Li6PS5Cl0.5Br0.5 (2.0 mS cm(-1)). LiNi0.6Co0.2Mn0.2O2/graphite ASLBs using 40 mu m thick Li6PS5Cl0.5Br0.5-infiltrated PI membranes show promising performances at 30 degrees C (146 mA h g(-1)) and excellent thermal stability (marginal degradation at 180 degrees C). Moreover, a new proof-of-concept fabrication protocol for ASLBs at scale that involves the injection of liquefied SEs into the electrode/PI/electrode assemblies is successfully demonstrated for LiCoO2/PI-Li6PS5Cl0.5Br0.5/Li4Ti5O12 ASLBs. -
dc.identifier.bibliographicCitation ACS ENERGY LETTERS, v.5, no.3, pp.718 - 727 -
dc.identifier.doi 10.1021/acsenergylett.0c00251 -
dc.identifier.issn 2380-8195 -
dc.identifier.scopusid 2-s2.0-85080027785 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/32029 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsenergylett.0c00251 -
dc.identifier.wosid 000526311000004 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LIQUID-PHASE TECHNIQUE -
dc.subject.keywordPlus LITHIUM-ION -
dc.subject.keywordPlus LI6PS5X X -
dc.subject.keywordPlus SUPERIONIC CONDUCTOR -
dc.subject.keywordPlus HYBRID ELECTROLYTES -
dc.subject.keywordPlus METAL -
dc.subject.keywordPlus CL -
dc.subject.keywordPlus BR -
dc.subject.keywordPlus NA3SBS4 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.