File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김대식

Kim, Dai-Sik
Nano Optics Group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 3 -
dc.citation.startPage 1900548 -
dc.citation.title ADVANCED OPTICAL MATERIALS -
dc.citation.volume 8 -
dc.contributor.author Jeong, Young-Gyun -
dc.contributor.author Bahk, Young-Mi -
dc.contributor.author Kim, Dai-Sik -
dc.date.accessioned 2023-12-21T18:08:12Z -
dc.date.available 2023-12-21T18:08:12Z -
dc.date.created 2019-09-16 -
dc.date.issued 2020-02 -
dc.description.abstract Phase-change phenomena have been an attractive research theme for decades due to the dynamic transition of material properties providing extraordinary capabilities for versatile optical device applications. Even at the terahertz (THz) frequency regime, phase-change materials (PCMs) promote the development of dynamic devices, especially when combined with a plasmonic approach delivering strong field enhancement and localization. According to the design of plasmonic metamaterials or hybrid composites, PCMs can actively modulate the electromagnetic properties of THz waves through thermal, electrical, and optical means. In turn, THz waves can affect the PCM properties in the nonlinear regime due to the intense field strength enhancement by plasmonic structures. Here, a few types of PCMs demonstrating promising potential in THz plasmonic applications are introduced. Starting from the best-known transition metal oxide, vanadium dioxide (VO2), which possesses an insulator-to-metal phase transition near room temperature, superconductors, chalcogenides, ferroelectrics, liquid crystals, and liquid metals are covered along with their phase-change properties and the control mechanisms infused with THz plasmonic applications. The corresponding recent progress presenting how PCMs combined with plasmonic structures can demonstrate effective THz modulation is reviewed. This general overview may provide a better understanding of dynamic THz plasmonics and new ideas for future THz technology. -
dc.identifier.bibliographicCitation ADVANCED OPTICAL MATERIALS, v.8, no.3, pp.1900548 -
dc.identifier.doi 10.1002/adom.201900548 -
dc.identifier.issn 2195-1071 -
dc.identifier.scopusid 2-s2.0-85071020961 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31897 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adom.201900548 -
dc.identifier.wosid 000482888400001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Dynamic Terahertz Plasmonics Enabled by Phase-Change Materials -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Optics -
dc.relation.journalResearchArea Materials Science; Optics -
dc.type.docType Review; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor active modulation -
dc.subject.keywordAuthor external stimuli -
dc.subject.keywordAuthor metamaterials -
dc.subject.keywordAuthor phase-change materials -
dc.subject.keywordAuthor phase transition -
dc.subject.keywordAuthor plasmonics -
dc.subject.keywordAuthor terahertz -
dc.subject.keywordPlus RECONFIGURABLE METAMATERIAL -
dc.subject.keywordPlus DIELECTRIC METASURFACE -
dc.subject.keywordPlus METAL TRANSITION -
dc.subject.keywordPlus RAMAN-SCATTERING -
dc.subject.keywordPlus THZ PULSE -
dc.subject.keywordPlus SOFT-MODE -
dc.subject.keywordPlus TUNABLE METAMATERIAL ABSORBER -
dc.subject.keywordPlus STRONTIUM-TITANATE -
dc.subject.keywordPlus INDUCED TRANSPARENCY -
dc.subject.keywordPlus BROAD-BAND -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.