File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김대식

Kim, Dai-Sik
Nano Optics Group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 451 -
dc.citation.number 2 -
dc.citation.startPage 435 -
dc.citation.title NANOPHOTONICS -
dc.citation.volume 9 -
dc.contributor.author Kang, Taehee -
dc.contributor.author Bahk, Young-Mi -
dc.contributor.author Kim, Dai-Sik -
dc.date.accessioned 2023-12-21T18:06:54Z -
dc.date.available 2023-12-21T18:06:54Z -
dc.date.created 2020-03-09 -
dc.date.issued 2020-02 -
dc.description.abstract Through the manipulation of metallic structures, light-matter interaction can enter into the realm of quantum mechanics. For example, intense terahertz pulses illuminating a metallic nanotip can promote terahertz field-driven electron tunneling to generate enormous electron emission currents in a subpicosecond time scale. By decreasing the dimension of the metallic structures down to the nanoscale and angstrom scale, one can obtain a strong field enhancement of the incoming terahertz field to achieve atomic field strength of the order of V/nm, driving electrons in the metal into tunneling regime by overcoming the potential barrier. Therefore, designing and optimizing the metal structure for high field enhancement are an essential step for studying the quantum phenomena with terahertz light. In this review, we present several types of metallic structures that can enhance the coupling of incoming terahertz pulses with the metals, leading to a strong modification of the potential barriers by the terahertz electric fields. Extreme nonlinear responses are expected, providing opportunities for the terahertz light for the strong light-matter interaction. Starting from a brief review about the terahertz field enhancement on the metallic structures, a few examples including metallic tips, dipole antenna, and metal nanogaps are introduced for boosting the quantum phenomena. The emerging techniques to control the electron tunneling driven by the terahertz pulse have a direct impact on the ultrafast science and on the realization of next-generation quantum devices. -
dc.identifier.bibliographicCitation NANOPHOTONICS, v.9, no.2, pp.435 - 451 -
dc.identifier.doi 10.1515/nanoph-2019-0436 -
dc.identifier.issn 2192-8606 -
dc.identifier.scopusid 2-s2.0-85079058400 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31895 -
dc.identifier.url https://www.degruyter.com/view/j/nanoph.2020.9.issue-2/nanoph-2019-0436/nanoph-2019-0436.xml -
dc.identifier.wosid 000513920500020 -
dc.language 영어 -
dc.publisher WALTER DE GRUYTER GMBH -
dc.title Terahertz quantum plasmonics at nanoscales and angstrom scales -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science; Optics; Physics -
dc.type.docType Article; Proceedings Paper -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor terahertz spectroscopy -
dc.subject.keywordAuthor quantum plasmonics -
dc.subject.keywordAuthor nanostructures -
dc.subject.keywordAuthor electron tunneling -
dc.subject.keywordPlus FIELD-RESOLVED DETECTION -
dc.subject.keywordPlus ELECTRIC-FIELD -
dc.subject.keywordPlus ENHANCEMENT -
dc.subject.keywordPlus GENERATION -
dc.subject.keywordPlus EXCITATION -
dc.subject.keywordPlus PULSES -
dc.subject.keywordPlus LIGHT -
dc.subject.keywordPlus GAPS -
dc.subject.keywordPlus METAMATERIALS -
dc.subject.keywordPlus SPECTROSCOPY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.