File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 13 -
dc.citation.startPage 1803722 -
dc.citation.title ADVANCED ENERGY MATERIALS -
dc.citation.volume 9 -
dc.contributor.author Lee, Jung‐In -
dc.contributor.author Shin, Myungsoo -
dc.contributor.author Hong, Dongki -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T19:15:45Z -
dc.date.available 2023-12-21T19:15:45Z -
dc.date.created 2019-03-12 -
dc.date.issued 2019-04 -
dc.description.abstract Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li-ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate-based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li 2 TiO 3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li-ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer-incorporating Li cells comprising high-capacity/voltage cathodes with reasonably high mass loading (LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 1.5 O 4 , and LiMn 2 O 4 ) show highly stable cycling performance in a carbonate-based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next-generation batteries. -
dc.identifier.bibliographicCitation ADVANCED ENERGY MATERIALS, v.9, no.13, pp.1803722 -
dc.identifier.doi 10.1002/aenm.201803722 -
dc.identifier.issn 1614-6832 -
dc.identifier.scopusid 2-s2.0-85061594125 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31867 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201803722 -
dc.identifier.wosid 000467131300008 -
dc.language 영어 -
dc.publisher Wiley-VCH Verlag -
dc.title Efficient Li-Ion-Conductive Layer for the Realization of Highly Stable High-Voltage and High-Capacity Lithium Metal Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor 3D-Li pathway -
dc.subject.keywordAuthor ex situ formed artificial layers -
dc.subject.keywordAuthor Li metal batteries -
dc.subject.keywordAuthor Li 2 TiO 3 -
dc.subject.keywordPlus Electrochemical performance -
dc.subject.keywordPlus Ex situ -
dc.subject.keywordPlus Galvanostatic Intermittent Titration Techniques -
dc.subject.keywordPlus Li metal -
dc.subject.keywordPlus Li2TiO3 -
dc.subject.keywordPlus Power electronic devices -
dc.subject.keywordPlus Lithium-ion batteries -
dc.subject.keywordPlus Cobalt compounds -
dc.subject.keywordPlus Electric power systems -
dc.subject.keywordPlus Electrochemical impedance spectroscopy -
dc.subject.keywordPlus Electrodes -
dc.subject.keywordPlus Ions -
dc.subject.keywordPlus Manganese compounds -
dc.subject.keywordPlus Metals -
dc.subject.keywordPlus Nickel compounds -
dc.subject.keywordPlus Scanning electron microscopy -
dc.subject.keywordPlus Solid electrolytes -
dc.subject.keywordPlus Titanium compounds -
dc.subject.keywordPlus 3D-Li pathway -
dc.subject.keywordPlus Carbonate-based electrolytes -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.