File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박노정

Park, Noejung
Computational Physics & Electronic Structure Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 1278 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 11 -
dc.contributor.author Kweon, Do Hyung -
dc.contributor.author Okyay, Mahmut Sait -
dc.contributor.author Kim, Seok-Jin -
dc.contributor.author Jeon, Jong-Pil -
dc.contributor.author Noh, Hyuk-Jun -
dc.contributor.author Park, Noejung -
dc.contributor.author Mahmood, Javeed -
dc.contributor.author Baek, Jong-Beom -
dc.date.accessioned 2023-12-21T17:49:17Z -
dc.date.available 2023-12-21T17:49:17Z -
dc.date.created 2020-03-23 -
dc.date.issued 2020-03 -
dc.description.abstract Developing efficient and stable electrocatalysts is crucial for the electrochemical production of pure and clean hydrogen. For practical applications, an economical and facile method of producing catalysts for the hydrogen evolution reaction (HER) is essential. Here, we report ruthenium (Ru) nanoparticles uniformly deposited on multi-walled carbon nanotubes (MWCNTs) as an efficient HER catalyst. The catalyst exhibits the small overpotentials of 13 and 17 mV at a current density of 10 mA cm(-2) in 0.5M aq. H2SO4 and 1.0M aq. KOH, respectively, surpassing the commercial Pt/C (16 mV and 33 mV). Moreover, the catalyst has excellent stability in both media, showing almost "zeroloss" during cycling. In a real device, the catalyst produces 15.4% more hydrogen per power consumed, and shows a higher Faradaic efficiency (92.28%) than the benchmark Pt/C (85.97%). Density functional theory calculations suggest that Ru-C bonding is the most plausible active site for the HER. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.11, no.1, pp.1278 -
dc.identifier.doi 10.1038/s41467-020-15069- -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85081618667 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31665 -
dc.identifier.url https://www.nature.com/articles/s41467-020-15069-3 -
dc.identifier.wosid 000549165900003 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus ACTIVE EDGE SITES -
dc.subject.keywordPlus ELECTROLYTIC HYDROGEN -
dc.subject.keywordPlus EVOLUTION REACTION -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus KINETICS -
dc.subject.keywordPlus OXYGEN -
dc.subject.keywordPlus PH -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.