File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 423 -
dc.citation.number 1 -
dc.citation.startPage 410 -
dc.citation.title CHEMISTRY OF MATERIALS -
dc.citation.volume 32 -
dc.contributor.author Chandra, Christian -
dc.contributor.author Cahyadi, Handi Setiadi -
dc.contributor.author Alvin, Stevanus -
dc.contributor.author Devina, Winda -
dc.contributor.author Park, Jae-Ho -
dc.contributor.author Chang, Wonyoung -
dc.contributor.author Chung, Kyung Yoon -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Kim, Jaehoo -
dc.date.accessioned 2023-12-21T18:09:15Z -
dc.date.available 2023-12-21T18:09:15Z -
dc.date.created 2020-02-20 -
dc.date.issued 2020-01 -
dc.description.abstract Silicon oxycarbides (SiOCs) are considered promising anode materials for sodium-ion batteries. However, the mechanisms of Na+-ion storage in SiOCs are not clear. In this study, the mechanism of Na+-ion storage in higherature-synthesized SiOCs (1200-1400 °C) is examined. Phase separation of the oxygen (O)-rich and carbon (C)-rich SiOxCy domains of SiOC during synthesis was accompanied by the evolution of micropores, graphitic layers, and a silicon carbide (SiC) phase. The higherature-synthesized SiOCs exhibited a large voltage plateau capacity below 0.1 V (45-63% of the total capacity). Ex situ measurements and density functional theory simulations revealed that within the sloping voltage region, Na+-ion uptake occurs mainly in the defects, micropores, C-rich SiOxCy phase, and some O-rich SiOxCy phases. In contrast, in the voltage plateau below 0.1 V, Na+-ion insertion into the O-rich SiOxCy phase and formation of Na-rich Si compounds are the main Na+-ion uptake mechanisms. The generated SiC phase confers excellent long-term cyclability to the higherature-synthesized SiOxCy. -
dc.identifier.bibliographicCitation CHEMISTRY OF MATERIALS, v.32, no.1, pp.410 - 423 -
dc.identifier.doi 10.1021/acs.chemmater.9b04018 -
dc.identifier.issn 0897-4756 -
dc.identifier.scopusid 2-s2.0-85077464922 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31574 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.chemmater.9b04018 -
dc.identifier.wosid 000507721600041 -
dc.language 영어 -
dc.publisher American Chemical Society -
dc.title Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HARD CARBON ANODES -
dc.subject.keywordPlus NA-ION BATTERIES -
dc.subject.keywordPlus HIGH-PERFORMANCE ANODE -
dc.subject.keywordPlus RICH SIOC ANODES -
dc.subject.keywordPlus AMORPHOUS-SILICON -
dc.subject.keywordPlus HIGH-CAPACITY -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus LITHIUM STORAGE -
dc.subject.keywordPlus COMPOSITE ANODE -
dc.subject.keywordPlus STABLE ANODE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.