File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1034 -
dc.citation.number 6481 -
dc.citation.startPage 1030 -
dc.citation.title SCIENCE -
dc.citation.volume 367 -
dc.contributor.author Zhang, Wei -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Chen, Tina -
dc.contributor.author Wu, Lijun -
dc.contributor.author Topsakal, Mehmet -
dc.contributor.author Zhu, Yimei -
dc.contributor.author Lu, Deyu -
dc.contributor.author Ceder, Gerbrand -
dc.contributor.author Wang, Feng -
dc.date.accessioned 2023-12-21T18:06:57Z -
dc.date.available 2023-12-21T18:06:57Z -
dc.date.created 2020-03-04 -
dc.date.issued 2020-02 -
dc.description.abstract Fast-charging batteries typically use electrodes capable of accommodating lithium continuously by means of solid-solution transformation because they have few kinetic barriers apart from ionic diffusion. One exception is lithium titanate (Li4Ti5O12), an anode exhibiting extraordinary rate capability apparently inconsistent with its two-phase reaction and slow Li diffusion in both phases. Through real-time tracking of Li+ migration using operando electron energy-loss spectroscopy, we reveal that facile transport in Li4+xTi5O12 is enabled by kinetic pathways comprising distorted Li polyhedra in metastable intermediates along two-phase boundaries. Our work demonstrates that high-rate capability may be enabled by accessing the energy landscape above the ground state, which may have fundamentally different kinetic mechanisms from the ground-state macroscopic phases. This insight should present new opportunities in searching for high-rate electrode materials. -
dc.identifier.bibliographicCitation SCIENCE, v.367, no.6481, pp.1030 - 1034 -
dc.identifier.doi 10.1126/science.aax3520 -
dc.identifier.issn 0036-8075 -
dc.identifier.scopusid 2-s2.0-85080957858 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31447 -
dc.identifier.url https://science.sciencemag.org/content/367/6481/1030 -
dc.identifier.wosid 000517979600040 -
dc.language 영어 -
dc.publisher AMER ASSOC ADVANCEMENT SCIENCE -
dc.title Kinetic pathways of ionic transport in fast-charging lithium titanate -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus LI4TI5O12 -
dc.subject.keywordPlus INSERTION -
dc.subject.keywordPlus 2-PHASE -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus LOCAL-STRUCTURE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.