File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 11 -
dc.citation.startPage 115419 -
dc.citation.title PHYSICAL REVIEW B -
dc.citation.volume 75 -
dc.contributor.author Larsson, Peter -
dc.contributor.author Larsson, J. Andreas -
dc.contributor.author Ahuja, Rajeev -
dc.contributor.author Ding, Feng -
dc.contributor.author Yakobson, Boris I. -
dc.contributor.author Duan, Haiming -
dc.contributor.author Rosen, Arne -
dc.contributor.author Bolton, Kim -
dc.date.accessioned 2023-12-22T09:36:15Z -
dc.date.available 2023-12-22T09:36:15Z -
dc.date.created 2020-03-04 -
dc.date.issued 2007-03 -
dc.description.abstract Density-functional theory is used to assess the validity of modeling metal clusters as single atoms or rings of atoms when determining adhesion strengths between clusters and single-walled carbon nanotubes (SWNTs). Representing a cluster by a single atom or ring gives the correct trends in SWNT-cluster adhesion strengths (Fe approximate to Co>Ni), but the single-atom model yields incorrect minimum-energy structures for all three metals. We have found that this is because of directional bonding between the SWNT end and the metal cluster, which is captured in the ring model but not by the single atom. Hence, pairwise potential models that do not describe directional bonding correctly, and which are commonly used to study these systems, are expected to give incorrect minimum-energy structures. -
dc.identifier.bibliographicCitation PHYSICAL REVIEW B, v.75, no.11, pp.115419 -
dc.identifier.doi 10.1103/PhysRevB.75.115419 -
dc.identifier.issn 1098-0121 -
dc.identifier.scopusid 2-s2.0-33947538436 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31416 -
dc.identifier.url https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.115419 -
dc.identifier.wosid 000245329600124 -
dc.language 영어 -
dc.publisher AMER PHYSICAL SOC -
dc.title Calculating carbon nanotube-catalyst adhesion strengths -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus GENERALIZED GRADIENT APPROXIMATION -
dc.subject.keywordPlus MOLECULAR-DYNAMICS SIMULATION -
dc.subject.keywordPlus ELECTRONIC-STRUCTURE -
dc.subject.keywordPlus AB-INITIO -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus COBALT -
dc.subject.keywordPlus SEPARATION -
dc.subject.keywordPlus CLUSTERS -
dc.subject.keywordPlus PARTICLE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.