File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 22 -
dc.citation.startPage 224501 -
dc.citation.title JOURNAL OF CHEMICAL PHYSICS -
dc.citation.volume 131 -
dc.contributor.author Ribas, Morgana A. -
dc.contributor.author Ding, Feng -
dc.contributor.author Balbuena, Perla B. -
dc.contributor.author Yakobson, Boris I. -
dc.date.accessioned 2023-12-22T07:36:45Z -
dc.date.available 2023-12-22T07:36:45Z -
dc.date.created 2020-03-04 -
dc.date.issued 2009-12 -
dc.description.abstract Catalytic nucleation of carbon nanotubes (CNTs) remains a challenge for the theory: Which factors and forces decide if the gathering sp(2)-network of atoms will adhere to the catalyst particle and fully cover it or the graphitic cap will liberate itself to extend into a hollow filament? This intimate mechanism cannot be seen in experiment, yet it can be investigated through comprehensive molecular dynamics. We systematically vary the adhesion strength (W-ad) of the graphitic cap to the catalyst and temperature T (and C diffusion rate). Observations allow us to build a statistically representative map of CNT nucleation and define the conditions for growth or metal encapsulation in a fullerene-shell (catalyst poisoning). It shows clearly that weak W-ad, sufficient thermal kinetic energy (high T) or fast C diffusion favor the CNT nucleation. In particular, below 600 K carbon-diffusion on the catalyst surface limits the growth, but at higher T it fully depends on cap lift-off. Informed choice of parameters allowed us to obtain the longest simulated nanotube structures. The study reveals a means of designing the catalyst for better CNT synthesis, potentially at desirably low temperatures. -
dc.identifier.bibliographicCitation JOURNAL OF CHEMICAL PHYSICS, v.131, no.22, pp.224501 -
dc.identifier.doi 10.1063/1.3266947 -
dc.identifier.issn 0021-9606 -
dc.identifier.scopusid 2-s2.0-72449136204 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31396 -
dc.identifier.url https://aip.scitation.org/doi/10.1063/1.3266947 -
dc.identifier.wosid 000272803000039 -
dc.language 영어 -
dc.publisher AMER INST PHYSICS -
dc.title Nanotube nucleation versus carbon-catalyst adhesion-Probed by molecular dynamics simulations -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Physics, Atomic, Molecular & Chemical -
dc.relation.journalResearchArea Chemistry; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor adhesion -
dc.subject.keywordAuthor carbon nanotubes -
dc.subject.keywordAuthor catalysts -
dc.subject.keywordAuthor molecular dynamics method -
dc.subject.keywordAuthor nanotechnology -
dc.subject.keywordAuthor nucleation -
dc.subject.keywordAuthor surface diffusion -
dc.subject.keywordPlus CHEMICAL-VAPOR-DEPOSITION -
dc.subject.keywordPlus METAL PARTICLES -
dc.subject.keywordPlus COMPUTER EXPERIMENTS -
dc.subject.keywordPlus CLASSICAL FLUIDS -
dc.subject.keywordPlus GROWTH-MECHANISM -
dc.subject.keywordPlus SWNT GROWTH -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus DIAMETER -
dc.subject.keywordPlus DECOMPOSITION -
dc.subject.keywordPlus NANOPARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.