File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 389 -
dc.citation.number 1-2 -
dc.citation.startPage 381 -
dc.citation.title MICROFLUIDICS AND NANOFLUIDICS -
dc.citation.volume 16 -
dc.contributor.author Shou, Dahua -
dc.contributor.author Fan, Jintu -
dc.contributor.author Mei, Maofei -
dc.contributor.author Ding, Feng -
dc.date.accessioned 2023-12-22T03:07:41Z -
dc.date.available 2023-12-22T03:07:41Z -
dc.date.created 2020-03-04 -
dc.date.issued 2014-01 -
dc.description.abstract Gas diffusion in nanofibrous and microfibrous materials is of great interest in microfluidics. In this work, an analytical model is proposed, based on fractal theory, to quantify gas diffusion across fibrous media composed of nanofibers and microfibers. The fractal model is expressed in terms of pore area and tortuosity fractal dimensions, allowing statistical quantification of the geometrical structures of fibrous media. Knudsen diffusion in nanoscale pores is considered. To validate this model, moisture vapor diffusion rate through electrospun nanofibrous webs was measured using the inverted-cup method. The diffusivities predicted from the proposed model agree well with the experimental measurements in the present investigation and those reported in the literature for effective diffusivities of gas diffusion layers in fuel cells. Based on the model, the effect of porosity, fiber radius, and the ratio between the minimum and the maximum pore sizes on the effective diffusivity is analyzed. -
dc.identifier.bibliographicCitation MICROFLUIDICS AND NANOFLUIDICS, v.16, no.1-2, pp.381 - 389 -
dc.identifier.doi 10.1007/s10404-013-1215-8 -
dc.identifier.issn 1613-4982 -
dc.identifier.scopusid 2-s2.0-84899439831 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31340 -
dc.identifier.url https://link.springer.com/article/10.1007%2Fs10404-013-1215-8 -
dc.identifier.wosid 000329406900036 -
dc.language 영어 -
dc.publisher SPRINGER HEIDELBERG -
dc.title An analytical model for gas diffusion though nanoscale and microscale fibrous media -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas -
dc.relation.journalResearchArea Science & Technology - Other Topics; Instruments & Instrumentation; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Gas diffusion -
dc.subject.keywordAuthor Knudsen diffusion -
dc.subject.keywordAuthor Modeling -
dc.subject.keywordAuthor Fractal -
dc.subject.keywordAuthor Nanofiber and microfiber -
dc.subject.keywordPlus PORE-SIZE DISTRIBUTION -
dc.subject.keywordPlus POROUS-MEDIA -
dc.subject.keywordPlus VISCOUS PERMEABILITY -
dc.subject.keywordPlus THERMAL INSULATION -
dc.subject.keywordPlus KNUDSEN DIFFUSION -
dc.subject.keywordPlus FIBER STRUCTURES -
dc.subject.keywordPlus RELAXATION-TIME -
dc.subject.keywordPlus FRACTAL MODEL -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus LAYER -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.