File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 231 -
dc.citation.startPage 222 -
dc.citation.title ELECTROCHIMICA ACTA -
dc.citation.volume 134 -
dc.contributor.author Xiao, Boqi -
dc.contributor.author Fan, Jintu -
dc.contributor.author Ding, Feng -
dc.date.accessioned 2023-12-22T02:36:21Z -
dc.date.available 2023-12-22T02:36:21Z -
dc.date.created 2020-03-04 -
dc.date.issued 2014-07 -
dc.description.abstract The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D-T), pore area fractal dimensions (d(f)), water phase (d(f,w)) and gas phase (d(f,g)) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models. -
dc.identifier.bibliographicCitation ELECTROCHIMICA ACTA, v.134, pp.222 - 231 -
dc.identifier.doi 10.1016/j.electacta.2014.04.138 -
dc.identifier.issn 0013-4686 -
dc.identifier.scopusid 2-s2.0-84900815964 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31333 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0013468614008986?via%3Dihub -
dc.identifier.wosid 000338387200029 -
dc.language 영어 -
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD -
dc.title A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Electrochemistry -
dc.relation.journalResearchArea Electrochemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Gas diffusion layer -
dc.subject.keywordAuthor Proton exchange membrane fuel cell -
dc.subject.keywordAuthor Permeability -
dc.subject.keywordAuthor Relative permeability -
dc.subject.keywordAuthor Fractal analytical model -
dc.subject.keywordPlus POROUS-MEDIA -
dc.subject.keywordPlus WATER TRANSPORT -
dc.subject.keywordPlus LIQUID WATER -
dc.subject.keywordPlus CAPILLARY-PRESSURE -
dc.subject.keywordPlus FLOW -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus CONDUCTIVITY -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus IMBIBITION -
dc.subject.keywordPlus CATHODE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.