File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권영국

Kwon, Youngkook
Electrochemistry Lab for Energy and Environment
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2121 -
dc.citation.number 5 -
dc.citation.startPage 2117 -
dc.citation.title ACS SUSTAINABLE CHEMISTRY & ENGINEERING -
dc.citation.volume 8 -
dc.contributor.author Lee, Mi-Young -
dc.contributor.author Han, Seungyeob -
dc.contributor.author Lim, Hyungseob -
dc.contributor.author Kwon, Youngkook -
dc.contributor.author Kang, Seoktae -
dc.date.accessioned 2023-12-21T18:07:09Z -
dc.date.available 2023-12-21T18:07:09Z -
dc.date.created 2020-02-20 -
dc.date.issued 2020-02 -
dc.description.abstract Herein, we introduce a permeable carbon nanotube hollow-fiber electrode incorporated with SnO2nanoparticles (SnO2-CHE) and propose a new type of gas-phase operational mode. Highly efficient electrochemical syngas production from CO2is made possible by switching the operating mode from liquid phase to gas phase. The operation of SnO2-CHE in the conventional liquid-phase mode yielded a H2/CO ratio higher than 4.59, and the maximum jCOwas only 2.16 mA/cm2 at-0.88 V (vs RHE) due to the low solubility and limited mass transfer of CO2in liquid electrolytes. On the other hand, SnO2-CHE operated under the newly designed gas-phase mode achieved a H2/CO ratio ranging from 1.22 to 4.11 with a maximum jCOof 7.42 mA/cm2 at-0.76 V (vs RHE), which is proper for direct post-conversion processes. Therefore, this work could offer a new avenue for electrochemical syngas production using a nonprecious metal-based hollow-fiber type electrode, which allows for a large electrode surface area and high CO2availability in gas-phase operation. -
dc.identifier.bibliographicCitation ACS SUSTAINABLE CHEMISTRY & ENGINEERING, v.8, no.5, pp.2117 - 2121 -
dc.identifier.doi 10.1021/acssuschemeng.9b05701 -
dc.identifier.issn 2168-0485 -
dc.identifier.scopusid 2-s2.0-85076808993 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31237 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acssuschemeng.9b05701 -
dc.identifier.wosid 000513089500001 -
dc.language 영어 -
dc.publisher American Chemical Society -
dc.title Electrocatalytic CO2 Reduction via a Permeable CNT Hollow-Fiber Electrode Incorporated with SnO2 Nanoparticles -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Green & Sustainable Science & Technology; Engineering, Chemical -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Carbon nanotubes electrode -
dc.subject.keywordAuthor CO2electrolysis -
dc.subject.keywordAuthor Gas-phase electrolysis -
dc.subject.keywordAuthor Liquid-phase electrolysis -
dc.subject.keywordAuthor Syngas production -
dc.subject.keywordPlus MESOPOROUS TIN OXIDE -
dc.subject.keywordPlus ELECTROCHEMICAL REDUCTION -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus SYNGAS PRODUCTION -
dc.subject.keywordPlus HIGH-EFFICIENCY -
dc.subject.keywordPlus ENHANCED ACTIVITY -
dc.subject.keywordPlus ELECTROREDUCTION -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus FORMATE -
dc.subject.keywordPlus ENERGY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.