File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박형렬

Park, Hyeong‐Ryeol
Laboratory for Ultrafast & Nanoscale Plasmonics
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 166391 -
dc.citation.title JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS -
dc.citation.volume 500 -
dc.contributor.author Shinde, K.P. -
dc.contributor.author Nan, W.Z. -
dc.contributor.author Tien, M.V. -
dc.contributor.author Lin, H. -
dc.contributor.author Park, Hyeong‐Ryeol -
dc.contributor.author Yu, S.-C. -
dc.contributor.author Chung, K.C. -
dc.contributor.author Kim, D.-H. -
dc.date.accessioned 2023-12-21T17:43:53Z -
dc.date.available 2023-12-21T17:43:53Z -
dc.date.created 2020-02-20 -
dc.date.issued 2020-04 -
dc.description.abstract Magnetic refrigeration is becoming a promising technology to replace the conventional refrigeration techniques based on gas compression/expansion at cryogenic temperature as well as at room temperature. In the present study, we have fabricated Ho2O3 nanoparticles by oxidation of HoN prepared by plasma arc discharge. The Ho2O3 nanoparticles annealed at 1200 °C were investigated by the structural and magnetocaloric analysis. The XRD pattern confirms the amorphous nature of naturally oxidized Ho2O3, which was converted into crystalline by annealing. It has been discovered that crystalline Ho2O3 nanoparticles exhibit significantly larger magnetocaloric effect at cryogenic temperature, in comparison to the amorphous nanoparticles, with the second-order antiferromagnetic phase transition. The maximum entropy change was found to be 15.1 J/kgK and 22.4 J/kgK at an applied magnetic field of 5 T for amorphous and crystalline Ho2O3, respectively. -
dc.identifier.bibliographicCitation JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, v.500, pp.166391 -
dc.identifier.doi 10.1016/j.jmmm.2020.166391 -
dc.identifier.issn 0304-8853 -
dc.identifier.scopusid 2-s2.0-85077517299 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31231 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0304885319328045?via%3Dihub -
dc.identifier.wosid 000512907600064 -
dc.language 영어 -
dc.publisher Elsevier B.V. -
dc.title Magnetocaloric effect in rare earth Ho2O3 nanoparticles at cryogenic temperature -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Physics, Condensed Matter -
dc.relation.journalResearchArea Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus Cryogenics -
dc.subject.keywordPlus Holmium compounds -
dc.subject.keywordPlus Magnetocaloric effects -
dc.subject.keywordPlus Nanoparticles -
dc.subject.keywordPlus Rare earths -
dc.subject.keywordPlus Refrigeration -
dc.subject.keywordPlus Amorphous nanoparticles -
dc.subject.keywordPlus Antiferromagnetic phase transition -
dc.subject.keywordPlus Applied magnetic fields -
dc.subject.keywordPlus Cryogenic temperatures -
dc.subject.keywordPlus Gas compression -
dc.subject.keywordPlus Magnetocaloric -
dc.subject.keywordPlus Plasma arc discharge -
dc.subject.keywordPlus Refrigeration techniques -
dc.subject.keywordPlus Nitrogen compounds -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.