File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조승호

Cho, Seungho
Metal Oxide DEsign Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 104536 -
dc.citation.title NANO ENERGY -
dc.citation.volume 71 -
dc.contributor.author Kursumovic, A -
dc.contributor.author Li, W.-W. -
dc.contributor.author Cho, S -
dc.contributor.author Curran, P. J. -
dc.contributor.author Tjhe, D.H.L. -
dc.contributor.author MacManus-Driscoll, J. L. -
dc.date.accessioned 2023-12-21T17:39:40Z -
dc.date.available 2023-12-21T17:39:40Z -
dc.date.created 2020-02-18 -
dc.date.issued 2020-05 -
dc.description.abstract We report record energy storage density (>80 J cm(-3)) in Pb-free relaxor ferroelectrics based on Mn-doped BiFeO3-BaTiO3 thin films. Rapid interval deposition was used to impose layer-by-layer growth improving crystallinity and lowering unwanted defects concentration. The growth and Mn doping produced an order of magnitude lower leakage, with strongly reduced dielectric loss (from room temperature to >300 degrees C, and 100 Hz to 1 MHz), e.g. by a factor of 5 at 225 degrees C and 25 kHz. At room temperature (RT), the dielectric breakdown strength increased by a factor of 1.5 to >3000 kV cm(-1) while the dielectric constant remained flat, at similar to 1000 from RT to 350 degrees C. The films perform better than competing materials (e.g. PZT and SrTiO3-based) while being Pb-free and while operating up to 350 degrees C, which SrTiO3-based systems do not. Our work gives considerable promise for high energy and power density capacitors for harsh environments. -
dc.identifier.bibliographicCitation NANO ENERGY, v.71, pp.104536 -
dc.identifier.doi 10.1016/j.nanoen.2020.104536 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-85079348680 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/31149 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2211285520300938 -
dc.identifier.wosid 000530670200036 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Lead-free relaxor thin films with huge energy density and low loss for high temperature applications -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Energy storage -
dc.subject.keywordAuthor Relaxor ferroelectrics -
dc.subject.keywordAuthor Lead-free -
dc.subject.keywordAuthor Epitaxial perovskite -
dc.subject.keywordAuthor Layer by layer growth -
dc.subject.keywordPlus EPITAXIAL-GROWTH -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus SRTIO3 -
dc.subject.keywordPlus POLARIZATION -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus CERAMICS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.