File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 14367 -
dc.citation.number 12 -
dc.citation.startPage 14357 -
dc.citation.title ACS NANO -
dc.citation.volume 13 -
dc.contributor.author Ryu, Jaegeon -
dc.contributor.author Park, Byeongho -
dc.contributor.author Kang, Jieun -
dc.contributor.author Hong, Dongki -
dc.contributor.author Kim, Sung-Dae -
dc.contributor.author Yoo, Jung-Keun -
dc.contributor.author Yi, Jin Woo -
dc.contributor.author Park, Soojin -
dc.contributor.author Oh, Youngseok -
dc.date.accessioned 2023-12-21T18:13:00Z -
dc.date.available 2023-12-21T18:13:00Z -
dc.date.created 2020-01-29 -
dc.date.issued 2019-12 -
dc.description.abstract Design of freestanding electrodes incorporated with redox-active organic materials has been limited by the poor intrinsic electrical conductivity and lack of methodology driving the feasible integration of conductive substrate and the organic molecules. Single-walled carbon nanotube (SWCNT) aerogels, which possess continuous network structure and high surface area, offer a three-dimensional electrically conducting scaffold. Here, we fabricate monolithic organic electrodes by coating a nanometer-scale imide-based network (IBN) that possesses abundant redox-active sites on the 3D SWCNT scaffold. The substantially integrated 3D monolithic organic electrodes sustain high electrical conductance through a 3D electronic pathway in their compressed form (similar to 21 mu m). A thin and controllable layer (<8 nm) of IBN organic materials has a strong adhesion onto the ultra-lightweight and conductive substrate and facilitates multielectron redox reactions to deliver a specific capacity of up to 1550 mA h g(-1) (corresponding to the areal capacity of similar to 2.8 mA h cm(-2)). The redox-active IBN in synergy with the 3D SWCNT scaffold can enable superior electrochemical performances compared to the previously reported organic-based electrode architectures and inorganic-based electrodes. -
dc.identifier.bibliographicCitation ACS NANO, v.13, no.12, pp.14357 - 14367 -
dc.identifier.doi 10.1021/acsnano.9b07807 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-85076239248 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30955 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsnano.9b07807 -
dc.identifier.wosid 000505633300073 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Three-Dimensional Monolithic Organic Battery Electrodes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor single-walled carbon nanotubes -
dc.subject.keywordAuthor aerogels -
dc.subject.keywordAuthor imide-based network -
dc.subject.keywordAuthor monolithic organic electrodes -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordPlus HIGH VOLUMETRIC CAPACITY -
dc.subject.keywordPlus ENERGY-STORAGE -
dc.subject.keywordPlus RECHARGEABLE BATTERIES -
dc.subject.keywordPlus CATHODE MATERIALS -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus PAPER -
dc.subject.keywordPlus NANOCOMPOSITE -
dc.subject.keywordPlus ARCHITECTURES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.