File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김정범

Kim, Jeong Beom
Molecular Biomedicine Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties

Author(s)
Kim, Min KyeongJeong, WonwooLee, Sang MinKim, Jeong BeomJin, SongwanKang, Hyun-Wook
Issued Date
2020-04
DOI
10.1088/1758-5090/ab5d80
URI
https://scholarworks.unist.ac.kr/handle/201301/30780
Fulltext
https://iopscience.iop.org/article/10.1088/1758-5090/ab5d80
Citation
BIOFABRICATION, v.12, no.2, pp.025003
Abstract
Recently, decellularized extracellular matrix-based bio-ink (dECM bio-ink) derived from animal organs is attracting attention because of its excellent biocompatibility. However, its poor 3D printability and weak mechanical properties remain a challenge. Here, we developed a new dECM bio-ink with enhanced 3D printability and mechanical properties. dECM micro-particles of about 13.4 μm in size were prepared by decellularizing a porcine liver followed by freeze-milling. The new bio-ink, named as dECM powder-based bio-ink (dECM pBio-ink), was prepared by loading the dECM micro-particles into a gelatin mixture. The usefulness of the dECM pBio-ink was evaluated by assessing its mechanical properties, printability, and cytocompatibility. The results showed that its mechanical properties and 3D printability were greatly improved. Its elastic modulus increased by up to 9.17 times that of the conventional dECM bio-ink. Micro-patterns with living cells were successfully achieved with 93 % cell viability. Above all, the new bio-ink showed superior performance in stacking of layers for 3D printing, whereas the conventional bio-ink could not maintain its shape. Finally, we demonstrated that the dECM pBio-ink possessed comparable cytocompatibility with the conventional dECM bio-ink through in-vitro tests with endothelial cells and primary mouse hepatocytes.
Publisher
IOP PUBLISHING LTD
ISSN
1758-5082
Keyword (Author)
decellularized extracellular matrix bio-inkcell printing3D printability
Keyword
HYDROGELVITROFABRICATIONVIABILITY

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.